
Chapter 4
Adequacy

4.1 Adequate and coadequate elements

All rings in this section will be usually the rings in which any nonzero prime ideal

is contained in a unique maximal ideal.

Definition 4.1. An element a of commutative ring R is called adequate to an ele-

ment b and b is called coadequate to an element a(aAb in notation) if one can find

elements r,s ∈ R such that

1. a = rs;

2. rR+bR = R;

3. for any nonunit divisor s′ of s: s′R+bR 6= R.

For a fixed element b ∈ R we introduce a set ∗Ab = {a ∈ R | aAb}. Similarly

fixing a ∈ R we consider a set aA∗ = {b ∈ R | aAb}. In the following we will

describe the properties of such sets.

Proposition 4.1. For any commutative ring R the set ∗Ab is multiplicatively closed.

Proof. Since 1 ∈ ∗Ab then ∗Ab 6= ∅. So we only need to prove that ∗Ab is closed

under taking products of its elements. Let a,d ∈ ∗Ab. Then there are elements

r,m, t, l ∈ R such that a = rm, d = tl where

rR+bR = R, tR+bR = R

and for any elements m′, l′ such that mR ⊂ m′R 6= R and lR ⊂ l′R 6= R implies

m′R+bR 6= R, and l′R+bR 6= R.

Then rtR+bR = R and for any r′ ∈ R such that mlR⊂ n′R 6= R we obtain

n′R+bR⊆ (n′R+mR+bR)∩ (n′R+ lR+bR) 6= R.

Thus n′R+bR 6= R. So ad ∈ ∗Ab as was desired. �

34
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Proposition 4.2. If R is a commutative Bezout domain then ∗Ab is a saturated set.

Proof. Let a∈ ∗Ab and a = dx for some elements x∈ R, d ∈ R. By the definition of

the elements a∈ ∗Ab there are elements r,s∈R such that a= rs where rR+bR=R

and sR⊂ s′R implies s′R+bR 6= R. Let dR+ rR = hR. Since R is a Bezout domain

then there are some elements d0,r0 ∈ R such that

d = hd0, r = hr0, d0R+ r0R = R.

This implies the equality d0u+ r0v = 1 for some elements u,v ∈ R. Then a =
hd0x = hr0s implies the equalities d0x = r0s and sd0u+ sr0v = s, since R is a ring

without zero divisors. Thus we obtain the equality d0(su+xv) = s i.e. the inclusion

sR⊂ d0R holds.

If d0R⊆ d′0R 6= R then d′0 can be used as s′ and we have

d′0R+bR 6= R.

Inasmuch

R = rR+bR⊂ hR+bR

we see that the decomposition d = d0h satisfies all conditions of the adequate

element’s definition d ∈ ∗Ab. So any divisor of element from ∗Ab is again in ∗Ab

as was desired. �

Proposition 4.3. If R is a commutative Bezout domain then aA∗ is a multiplica-

tively closed set.

Proof. Clearly aA1 and thus 1 ∈ aA∗. So, aA∗ is nonempty. Next, suppose that

x,y ∈ aA∗. Then there are r1,r2,s1,s2 ∈ R such that

a = r1s1 = r2s2, r1R+ xR = r2R+ yR = R, s′1R+ xR 6= R, s2R+ yR 6= R

for any non invertible divisors s′1,s
′
2 of s1,s2 respectively.

Let rR= r1R+r2R and r1 = ru, r2 = rv for some r,u,v∈R. Note that uR+vR=
R as R is a domain. Furthermore, rR+ xR = r1R+ r2R+ xR = R and rR+ yR =
r1R+ r2R+ yR = R.

Suppose that rR+ s1R = hR 6= R. Then hR+ xR⊇ rR+ xR = R. But since h is

a non invertible divisor of s1 then hR+xR 6= R. The obtained contradiction proves

the fact that rR+ s1R = R.
Moreover, the equality rus1 = rvs2 implies us1 = vs2 again since R is a domain.

Hence s2R⊆ uR. If we take s = us1 then a = rs and
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R = (xR+ rR)(yR+ rR) = abR+ rR,

s′R+ xyR⊆ (s′R+ xR)∩ (s′R+ yR)⊆ (s′R+ s1R+ xR)∩ (s′R+ s2R+ yR) 6= R,

where s′ is arbitrary non invertible element such that s′R ⊇ us1R ⊃ s1s2R. Thus

aAxy and aA∗ is multiplicatively closed. �

Definition 4.2. An element a ∈ R is called adequate if for every element b ∈ R :

aAb. If b is a nonzero element then it is called coadequate if for any element a∈R :

aAb A commutative ring is called an adequate ring if all its nonzero elements are

adequate. If even a zero element of adequate ring is an adequate element such ring

is called everywhere adequate.

Although any everywhere adequate ring is an adequate ring the converse is

not always true. For example, a ring of integers Z is adequate but not everywhere

adequate ring.

Example 4.1. In any commutative ring R the idempotents are coadequate.

In fact if e2 = e ∈ R then for any a ∈ R there are the decompositions

a = (1− e+ ea)(e+a− ea), e = e(e+a− ea).

Since (1−e+ea) ·+e(1−a) = 1 then (1−e−ea)R+eR = R. Moreover if s′ is a

non invertible divisor of e+a− ea then s′R+ eR⊆ (e+a− ea)R 6= R. Hence aAe

as was desired.

Since any commutative principal ideal domain is a factorial domain ???? we

have the following result.

Proposition 4.4.

Theorem 4.1. A commutative principal ideal domain is an adequate domain.

Proof. Let R be a commutative principal ideal domain and a be a nonzero element

of R. Consider any element c ∈ R. If c = 0 then obviously cAa. Since every com-

mutative principal ideal domain is a factorial domain then for in a case of nonzero

c there are decompositions

a = u1p1
k1 . . . pn

kn, c = u2p1
s1 . . . pn

sn

where u1 and u2 are units of R, p1, . . . , pn – prime elements of R and k1, . . . ,kn,s1, . . . ,sn ∈
N∪{0}.

Let p1, . . . , pt are the prime elements which are divisors of element a and
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piR+ cR = R,

where i= 1,2, . . . , t. Let r = p1
k1 . . . pt

kt then s= a
r

is such element that every prime

divisor of s is a divisor of c. Therefore a = rs, where rR+cR = R and s′R+cR 6= R

for each nonunit divisor s′ of s. Theorem is proved. �

Example 4.2. Let R be a ring of entire functions on the complex plane and f ,g∈ R.

Let (Ci,ni) be the set of common zeroes with their multiplicities. By Mittag-Lefler

theorem there is an entire function h having precisely these zeroes. Then function

a = f
h

that divides f is coprime with g, and is such that for any nonunit b dividing
f
a

has no common zero with g.

Also the function

K =

(

f

h

)2

+
(g

h

)2

is always nonzero, so a is unit in R, thus the function

h =

(

f

hK

)

f +
( g

hK

)

g

is the greatest common divisor of f and g:

f R+gR = hR.

This proves that R is a commutative Bezout domain. Taking r = f
h

and s = h, we

have f = rs, where rR+gR = R and s′R+gR 6= R for each nonunit divisor s′ of s,

hence R is an adequate domain.

Therefore we have proved that a ring of entire functions on the complex plane

is a commutative adequate Bezout domain. Obviously, R is not a principal ideal

domain.

Theorem 4.2. Every a commutative von Neumann regular ring is an everywhere

adequate ring.

Proof. Let R be a commutative von Neumann regular ring. First we show that R

is a Bezout ring. If a2x = a then e = ax is an idempotent and aR = eR. Now,

let’s prove that every finitely generated ideal is principal. For b2y = b we have the

equalities

f = by, f 2 = f .

If we denote d = e+ f − e f then a = ad, b = bd and
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d ∈ eR+ f R = aR+ f R = aR+bR⊆ dR+dR = dR.

Therefore dR = aR+bR, and every element is a unit multiple of an idempotent.

Now we will show that x can be chosen invertible in a2x = a.

Let x satisfies a2x = a and z satisfies x2z = x. Since axz = (a2x)xz = a2x = a,

then denoting u = 1+ x− xz we have a2u = a.

Obviously, uR+xR=R. But xu= x2, whence x belongs to every maximal ideal

that contains u. It follows that u is a unit.

To prove that R is an adequate ring let a,b∈ R. By the von Neumann regularity

of R there are idempotents e, f ∈ R such that e = au, f = bv, where u,v are some

invertible elements of R.

As was noted above, dR = eR+ f R, where d = e+ f − e f taking e1 = 1−
f + e f we obtain e = e1d and e1R+ f R = R. Since d divides f then any nonunit

divisor d′ of d cannot be relatively prime to f . To prove that a = 0 is an adequate

element of R we need to find for any element b ∈ R some elements r,s ∈ R such

that 0 = rs, rR+bR = R and if s′ is nonunit divisor of s then s′R+bR = R. Let f

be an idempotent such that f R = bR. Then the decomposition

R = f R⊕ (1− f )R

implies that r = 1− f , s = f satisfy the desired properties. Theorem is proved. �

Observe that if R is an adequate ring and the adequate condition does not hold

when a = 0, then R is indecomposable (into the direct product of ring)

Note that any valuation ring trivially satisfies the adequate condition, even for

zero element.

Theorem 4.3. [37, 43] Every nonzero (proper) prime ideal of an adequate Bezout

ring R is contained in a unique maximal ideal of R.

Proof. Suppose that the nozero prime ideal P of R is contained in the intersec-

tion of two distinct maximal ideals M1,M2 of a ring R. Since M1,M2 are distinct

maximal ideals, there exist m1 ∈M1, m2 ∈M2 such that

m1R+m2R = R.

Let p be any nonzero element of P. Since R is adequate then there are elements

r,s ∈ R such that rR+m1R = R, s′R+m1R 6= R for each non unit divisor s′ of s.

Since P is a prime ideal and P⊂M1 it follows that s ∈ P. Since R is a Bezout ring

there is d ∈ R such that

sR+m2R = dR.



4.1 Adequate and coadequate elements 39

Since P⊂M2 then dR⊂M2 6= R and d is a nonunit divisor of s. The inclusion

dR+m1R⊃ m2R+m1R = R,

provide us with the contradiction with the adequacy of R. Theorem is proved. �

Example 4.3. (Henriksen’s example.)[ ] Consider the subring

R = {z0 +a1x+a2x2 + . . . |z0 ∈ Z,ai ∈Q}

of the ring of formal power series over Q.

Firstly, we will show that R is a Bezout ring verifying that for each a,b ∈ R,

the ideal aR+bR is principal.

The case when a or b equals 0 is trivial, so we assume that neither a nor b is

0. For any nonzero c ∈ R, let n(c) denote the least (nonnegative) integer such that

cn(c) 6= 0. If we denote c∗ = cn(c)x
n(c), then then

c = c∗(1+
∞

∑
k=n(c)+1

ck

cn(c)
xk).

Since the last factor is a unit in R then cR = c∗R. By the above

aR+bR = a∗R+b∗R.

If n(a)> n(b), b∗ is a divisor of a∗, so a∗R+b∗R = b∗R. Similarly, if n(a)> n(b)
then a∗R+b∗R = a∗R.

If n(a) = n(b) = n then we can write

a∗ =
α1

α2
xn, b∗ =

β1

β2
xn,

where α1,α2,β1,β2 ∈ Z and α2β2 6= 0.

If n = 0 then take α2 = β2 = 1. Then there exist γ1,γ2 ∈ Z such that α1β2 =
γ1δ , α2β1 = γ2δ , (γ1,γ2) = 1. It can be easily verified that

a∗R+b∗R =
δxn

α2β2
R.

Therefore R is a Bezout ring by definition.

Obviously, J(R) = {a ∈ R|a0 = 0} and R/J(R)∼= Z.

Hence, J(R) is a prime ideal of R and Z since contains more than one maximal

ideal then using Theorem 4.3 we see that R is not an adequate ring. �
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Theorem 4.3 provides a complete description of the spectrum of an adequate

ring considering it as a partially order set. Any adequate Bezout ring the set of

prime ideals that is contained in a given maximal ideal is linearly ordered since

the localization of Bezout ring at any maximal ideal is a valuation ring. Thus if

R is an adequate Bezout ring and not an integral domain, then the spectrum of R

is disjoint union of totally ordered sets. If R is an adequate Bezout domain, then

spectrum of R is a union of totally ordered chains with the only common element

(the zero ideal that is prime).

4.2 Stable range of adequate rings

The stable range of ring is one of the important invariants of algebraic K-theory.

We will show that the stable range of adequate ring

equals 2.

Definition 4.3. By the stable range of ring R we mean the infimum st.r.(R) of the

positive integers n such that whenever

a1R+a2R+ . . .+an+1R = R

then there are b1, . . . ,bn ∈ R such that

(a1 +b1an+1)R+ · · ·+(an +bnan+1)R = R.

Definition 4.4. A ring R is called a ring of stable range 2 if for any a,b,c ∈ R such

that aR+bR+ cR = R one can write

(a+ cx)R+(b+ cy)R = R

for some elements x,y ∈ R.

Theorem 4.4. If R is an adequate Bezout ring then st.r.(R) = 2.

Proof. Let aR+bR+ cR = R. If a = 0, then bR+ cR = R, and hence

(a+ c ·1)R+(b+ c ·0)R = R

and the stable range 2 condition is satisfied. If a 6= 0, then a = rs, where rR+bR =
R and s′R+bR 6= R for any nonunit divisor s′ of the element s ∈ R. We claim that

(a+ c ·0)R+(b+ rc)R = aR+(b+ rc)R = R.



4.2 Stable range of adequate rings 41

Suppose the contrary, i. e.

aR+(b+ rc)R = δR,

where δ is nonunit element of R. Then aR ⊂ δR. If rR+ δR = hR, where h is

nonunit element of R, then

(b+ rc)R⊂ hR.

Since rR⊂ hR, then bR⊂ hR and it is impossible, since rR+bR= R. If sR⊂ δR 6=
R then δR+bR = αR, where α is nonunit element of R. Then

(b+ rc)R⊂ αR

and it is impossible, since aR+bR+ cR = R. Therefore

aR+(b+ rc)R = R,

i.e. (a+0 · c)R+(b+ rc)R = R and st.r.(R) = 2. Theorem is proved. �

Theorem 4.5. If R is an adequate Bezout ring and J(R) 6= 0 then st.r.(R) = 1.

Proof. Let bR+ cR = R and a ∈ J(R) \ {0}. Then obviously aR+ bR+ cR = R.
According to the proof of Theorem 4.4 we have

aR+(b+ cr)R = R

for some element r ∈ R. Since a ∈ J(R), then (b+ cr)R = R, i.e. st.r.(R) = 2.

Theorem is proved. �

Corollary 4.1. If R is a Bezout ring and there is an adequate element a in J(R)
then st.r.(R) = 1.

Henriksen studied the following generalization of adequate rings, that have

some very nice properties, using the restriction on the cardinality of commutative

ring’s spectrum.

Definition 4.5. We say the commutative ring R satisfies Henriksen hypothesis if

for every a,b ∈ R with a /∈ J(R) there is r ∈ R such that the set of maximal ideals

of R containing r is precisely the set of maximal ideals of R containing a and not

containing b, i.e.

mspec(r) = mspec(a)\mspec(b).

Proposition 4.5. Let R be a commutative adequate ring. Then R satisfies Henrik-

sen hypothesis.
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Proof. Let a,b ∈ R and a /∈ J(R). Since R is an adequate ring then there are some

r,s ∈ R such that a = rs, where rR+ bR = R and s′R+ bR 6= R for any nonunit

divisor s′ of s. We are going to prove that

mspec(r) = mspec(a)\mspec(b).

Since aR ⊂ rR then mspec(r) ⊂ mspec(a). Let M ∈ mspec(b)∩mspec(a). We

claim that M ∈mspec(r). If M ∈mspec(r) then

R = rR+bR⊂M.

That is impossible. Since a = rs, rR+ sR = R we have mspec(a) = mspec(r)∪
mspec(s), mspec(r)∩mspec(s) = /0. Since s′R+bR 6= R for any nonunit divisor s′

of s then we obtain

mspec(r) = mspec(a)\mspec(b). Proposition is proved. �

4.3 Zero-adequate and everywhere adequate rings

Now we are going to study commutative rings such that zero is an adequate ele-

ment in this rings. The structure of such rings allows us to construct more examples

of adequate rings.

Theorem 4.6. Let a be an adequate element of a commutative Bezout ring. Then

zero is an adequate element of the quotient-ring R/aR.

Proof. Let b = b+aR be an arbitrary element of the quotient-ring R = R/aR. If a

is an adequate element of R then according to the definition of an adequate element

there exist elements r,s ∈ R such that a = rs, where rR+bR = R and s′R+bR 6= R

for any nonunit divisor s′ of s. Hence

RR+bR = R.

Let s = s+aR and t be a nonunit divisor s ∈ R. Then there exist k ∈ R such that

(s+ak)R⊂ tR.

We claim that sR + tR 6= R. Assume the contrary, i.e. sR + tR = R. Since (s +
ak)R ⊂ tR, then s+ ak = tβ for some β ∈ R. Therefore s(1+ rk) = tβ and the

equality sR+tR=R implies that (1+rk)R⊃ tR i.e. tR+rR=R. Since sR+tR=R

and tR+ rR = R then
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tR+aR = R.

The latter means that t = t + aR is a unit element of R and this is a contradiction

to the choice of t. Thus, we have proved that

sR+ tR = uR 6= R.

Then uR+ bR 6= R and hence uR+ bR 6= R. Finally we have proved that 0 is an

adequate element of R. Theorem is proved. �

Theorem 4.7. If zero is an adequate element of commutative Bezout ring R then R

is a ring of idempotent stable range 1.

Proof. Let bR+ cR = R. Since 0 is an adequate element of the ring R there are

r,s∈ R then we obtain 0= rs, where rR+bR= R and s′R+bR 6= R for any nonunit

divisor s′ of s. We already know that rR+ sR = R, so

ru+ sv = 1

for some u,v ∈ R. Note that the elements e = ru and 1−e = sv are idempotents of

a ring R. We claim that (b+ ce)R = R. Suppose

(b+ ce)R = hR 6= R.

Consider hR+ rR = tR. If t is nonunit element of R then taking into account that

(b+ ce)R⊂ hR⊂ tR

we obtain that bR ⊂ tR. But this is impossible because rR ⊂ tR, bR ⊂ tR and

bR+ rR = R. Hence hR+ rR = R. Moreover we claim that hR+ sR = R. Suppose

sR+ tR = tR 6= R. Then according to the definition of the element s we obtain that

tR+bR = kR 6= R.

But on the other hand (b+ ce)R = hR and eR+ sR = R, so eR+ tR = R and hence

eR ⊂ kR. However, this is impossible as bR ⊂ kR, but bR+ cR = R. We obtained

a contradiction to the assumption and, therefore, sR+hR = R. Since rR+hR = R

and sR+hR = R then rsR+hR = R, i.e hR = R. Theorem is proved. �

Since a class of a commutative ring of idempotent stable range 1 coincides

with the class of a commutative clean ring due to Proposition 2.17 we derive the

following result.
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Theorem 4.8. Let R be a commutative Bezout ring and 0 is an adequate element

of R. Then R is a clean ring.

Naturally, the following question: if R is a commutative Bezout ring and 0

is an adequate element of R, then is R an everywhere adequate ring? In the case

of commutative Bezout rings with the finite number of minimal prime ideals we

obtain an affirmative answer.

Theorem 4.9. Let R be a commutative Bezout ring, 0 is an adequate element of

R and R is a ring with the finite numbers of minimal prime ideals. Then R is an

everywhere adequate ring.

Proof. Let P1,P2, . . . ,Pn be all minimal prime ideals of the ring. Denote by

N(R) =
n
⋂

i=1

Pi.

Since R is an arithmetical ring then we obtain that Pi+Pj = R for any i, j such that

i 6= j. According to the Chinese remainder theorem there is a decomposition

R/N(R) = R/P1⊕R/P2⊕ . . .⊕R/Pn.

Since every clean ring is a PM-ring then by Theorem 4.8 we conclude that R/Pi

are local domains for any i = 1,2, . . . ,n.

Thus there are mutually orthogonal idempotents e1,e2, . . . ,en ∈ R such that

e1 + e2 + . . .+ en = 1. Furthermore, we lift them to some mutually orthogonal

idempotents [ ] e1,e2, . . . ,en ∈ R. Since 1− (e1 + e2 + . . .+ en) is an idempotent

element in N(R) then it must be zero. Hence

R = e1R⊕ e2R⊕ . . .⊕ enR,

where each eiR is local Bezout domain, i.e. valuation ring [ ]. By Theorem 4.11

the ring R is an everywhere adequate ring. Theorem is proved. �

Now we answer another question. Let R be a commutative Bezout ring and

zero be an adequate element in the quotient-ring R/aR. Is the element a adequate

in R? The answer in the case of a commutative Bezout domain is affirmative and

is given by the following theorem.

Theorem 4.10. Let R be a commutative Bezout domain. If zero is an adequate

element of the quotient-ring R/aR then a is an adequate element of the domain R.
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Proof. Let R=R/aR and b∈R. Since 0 is adequate then there are elements R,s∈R

such that

0 = rs

where rR+ bR = R and s′R+ bR 6= R for any nonunit divisor s′ of s (here b ∈ R,

b = b+aR).

Since rR+bR = R then there exist elements t,u,v ∈ R such that

ru+bv = 1+at

(here r = r+aR). Let aR+ rR = δR. Then a = δa0, r = δ r0 for some elements a0

and r0 such that

a0R+ r0R = R.

Hence δR+ bR = R and ru− at + bv = 1. Since 0 = rs then we see that rs = aα
for some element α ∈ R (here s = r+aR). Hence

δ r0s = δa0α

and since R is a domain then r0s = a0α . Since r0R+ a0R = R then a0β = s for

some element β ∈ R.

Thus a = δa0, where δR+bR = R, sR ⊂ a0R. Then for any nonunit divisor j

of a0 we have jR+ bR 6= R i.e. a is an adequate element of a ring R. Theorem is

proved. �

In this section we will consider everywhere adequate rings. The first examples

of everywhere adequate rings are the von Neumann regular rings and valuation

rings. Let’s start with the following result.

Proposition 4.6. Let P be a prime ideal of the ring R that contains at least one

adequate element. Then P is contained in a unique maximal ideal of R.

Proof. Let P be a prime that is not maximal one and let a ∈ P be an adequate

element. Suppose that there are two distinct maximal ideals M1 and M2 such that

P⊂M1∩M2.

Since M1 6= M2 there are elements m1 ∈M1 and m2 ∈M2 such that

m1 +m2 = 1.

Since a is an adequate element we can find elements r,s ∈ R such that a = rs,

where rR + m1R = R and for any nonunit divisor s′ of the element s we have
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s′R+m1R 6= R. Since P is a prime ideal then s ∈ P. Let sR+m2R = dR. Since

s ⊂M2 and m2 ∈M2 then d is nonunit divisor of the element m2. Hence we have

dR+m1R 6= R. But

dR+m1R⊃ m2R+m1R = R

that contradicts the adequacy of element a. �

Proposition 4.7. A commutative Bezout ring with the unique minimal prime ideal

is everywhere adequate if and only if it is a valuation ring.

Proof. The necessity of this statement follows from Proposition 4.6. On the other

hand, the sufficiency part follows from fact that Bezout ring with unique minimal

prime ideal is a ring with unique maximal ideal, i. e. it is a valuation ring. �

Theorem 4.11. A commutative Bezout ring with a finite number of minimal prime

ideals is everywhere adequate ring if and only if it is a finite direct sum of valuation

rings.

Proof. Let P1, . . . ,Pn be all minimal prime ideals of R and N(R) be a nilradical of

R. Since every Bezout ring is arithmetical then the ideals Pi are pairwise comax-

imal, and hence R/N(R) is a direct sum of domains R/P1, . . . ,R/Pn by Chinese

remainder theorem.

Thus there exist mutually orthogonal idempotents e1, . . . ,en where ei ∈ R/Pi

such that

e1 + . . .+ en = 1.

Then we lift them to mutually orthogonal idempotents e1, . . . ,en ∈ R [ ]. Since

1− (e1 + . . .+ en)

is an idempotent element in N(R) then it must be zero. Thus

R = e1R⊕ . . .⊕ enR

and each eiR is a minimal prime ideal.

Since every eiR
∼= R/(1− ei)R is homomorphic image of R then R is a Bezout

ring and by Proposition 4.6 each eiR is a valuation ring.

Let R be the direct sum of valuation rings Ri = eiR. It easy to see that R is a

Bezout ring. Let a = (a1, . . . ,an) and b = (b1, . . . ,bn) be the elements of R with

a 6= 0. Define the elements r,s ∈ R coordinatewise in the following way:

ri =

{

1, if bi is nonunit in Ri,

ai, if bi is unit in Ri;
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si =

{

ai, if bi is nonunit in Ri,

1, if bi is unit in Ri.

Clearly a = rs and rR+ bR = R. Let s′ = (s′1, . . . ,s
′
n) be a nonunit of R which

divides s; if s′i is a nonunit, then si is a nonunit and hence bi is a nonunit. Thus

s′Ri +biRi 6= Ri. Therefore s′R+bR 6= R.

Since a valuation ring is any everywhere adequate ring then each Ri is adequate

and the adequacy condition holds for a = 0 in each Ri. Therefore R is everywhere

adequate ring. Theorem is proved. �

Theorem 4.12. Everywhere adequate Bezout ring is a clean ring.

Proof. Let R be an everywhere adequate ring and b ∈ R. Let 0 = rs, where rR+
bR = R and s′R+ bR 6= R for each nonunit divisor s′ of the element s. We claim

that sR+ rR = R. If we suppose that

sR+ rR = δR 6= R

then δR+bR = Rsince δ is a as divisor of r and δR+bR 6= R as δ is a divisor of

s. Suppose that sR+(1−b)R = δR 6= R, then s = δ s0 and let δR+bR = hR 6= R.

Then b = hb0 and 1− b = hy for some elements b0,y ∈ R. It means that hR = R.

Therefore

sR+(1−b)R = R.

Since rR+ sR = R then we see that ru+ sv = 1 for some elements u,v ∈ R. Since

rs = 0, we have r2u = r, s2v = s. If we denote e = ru, then e2 = e and 1− e = sv.

Since rR+bR = R we obtain that

rα +bβ = 1

for some elements α,β ∈R. Here svbβ = sv, i.e. 1−e∈ bR. Similarly, e∈ (1−b)R
so R is an exchange ring and by Proposition 2.17 R is a clean ring. Theorem is

proved. �

Since any clean ring is a PM-ring then according to Theorem 4.12 and Propo-

sition 2.17 we obtain

Theorem 4.13. Everywhere adequate Bezout ring is a PM-ring.

Since any clean ring is a ring of idempotent stable range 1 then by Theo-

rem 4.12 we have a next result.

Theorem 4.14. Everywhere adequate Bezout ring is a ring of idempotent stable

range 1.


