
Chapter 5
Finite homomorphic images

5.1 Minimal prime spectrum and fractionally regular rings

In this section, we are going to investigate the influence of commutative Bezout

ring’s spectrum on the matrix diagonal reduction possibility. One of the following

results is: a commutative Bezout ring with finitely many minimal prime ideals is

an elementary divisor ring if and only if any quotient-ring of R with respect to

prime ideals is an elementary divisor ring.

For an arbitrary element x of the ring R we denote by

D(x) = {P ∈minR|x /∈ P}

the basic set of the Zariski topology on minR. We say that minR is a compact if

minR is a compact in this topology.

Proposition 5.1. An Hermite ring R is an elementary divisor ring if and only if

R/N(R) is an elementary divisor ring.

Proof. The necessity follows from the fact that any homomorphic image of an

elementary divisor ring is an elementary divisor ring. So, it suffices to consider

only the case when R/N(R) is an elementary divisor ring. Due to Theorem 3.6 in

order to prove that R is an elementary divisor ring, it suffices to show that for any

a,b,c ∈ R such that

aR+bR+ cR = R

there exist elements p,q ∈ R such that

(ap+bq)R+ cqR = R.

Since R/N(R) is an elementary divisor ring then by Theorem 3.6 for elements

a,b,c ∈ R/N(R) there exists elements p,q,u,v ∈ R/N(R) such that

48
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(ap+bq)u+ cqv = 1

(a,b,c are the homomorphic images of the elements a,b and c under the canonical

map of R onto R/N(R)).
Hence, it is obvious that there exist elements p,q,u,v ∈ R and n ∈ N(R)) such

that

(ap+bq)u+ cqv = 1+n.

Since 1+n ∈U(R) then

(ap+bq)R+ cqR = R,

that completes the proof. The Proposition is proved. �

Theorem 5.1. A Bezout ring with finitely many minimal prime ideals is an elemen-

tary divisor ring if and only if for an arbitrary prime ideal, the quotient ring with

respect to this ideal is an elementary divisor ring.

Proof. Since any homomorphic image of an elementary divisor ring is an elemen-

tary divisor ring then we need to prove only sufficiency part. In view of Theorem

4.11 we have that

R/N(R)∼= R/P1⊕R/P2⊕ . . .⊕R/Pn

is a direct sum of elementary divisor rings and, therefore, R/N(R) is an elementary

divisor ring. We establish that R is an Hermite ring. Hence, R is an elementary

divisor ring. Theorem is proved. �

Now let’s consider the Bezout rings R such that the quotient rings QCl(R)
contain only finitely many minimal prime ideals. Curious reader can check that any

ring whose quotient rings with respect to the nilradical are Goldie rings satisfies

the mentioned condition.

Theorem 5.2. Let R be a Bezout ring such that its classical quotient ring QCl(R)
has finitely many minimal prime ideals. Then

R = R1⊕R2⊕ . . .⊕Rn,

where R1,R2, . . . ,Rn are Bezout ring with finitely many minimal prime ideal.

Proof. By [ ] there is a decomposition

QCl(R) = e1QCl(R)⊕ e2QCl(R)⊕ . . .⊕ enQCl(R),
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where e1QCl(R),e2QCl(R), . . . ,enQCl(R) are Bezout ring with unique minimal

prime ideal.

Let S = e1R⊕ . . .⊕ enR since R is a distributive ring then all idempotents of

QCl(R) are in R ([ ], Lemma 1.10). Hence, we have S = R. It is obvious that if P is

a minimal prime ideal in eiQCl(R), then P∩R is a minimal prime ideal in R that is

contained in eiR, i.e., the ring eiR contains a unique minimal prime ideal. Theorem

is proved. �

Note that the ring eiR (see Theorem 5.2) is an Hermite ring [ ] and as an obvious

consequence of Theorem 5.2 we obtain the following statement:

Corollary 5.1. Let R be a Bezout ring such that R/N(R) is a Goldie ring. Then R

is an Hermite ring.

Theorem 5.3. Let R be a Bezout ring in which an arbitrary minimal prime ideal

is contained in unique maximal ideal and its classical quotient ring is a ring with

finitely many minimal prime ideals. Then R is an Hermite ring and, moreover, is a

finite direct sum of valuation rings.

Proof. By Theorem 5.2 we have a decomposition

R = e1R⊕ . . .⊕ enR,

where each eiR contains a unique minimal prime ideal, which is, obviously, an

ideal in R. Hence eiR is a local Bezout ring and consequently a valuation ring,

which is obviously an Hermite ring. Using Theorems 4.11 and 4.4 we finish the

proof of theorem. �

Theorem 5.4. Let R be a Bezout ring such that its arbitrary minimal prime ideal

is contained in a unique maximal ideal and the classical quotient ring of R has

finitely many minimal prime ideals. Then R is an elementary divisor ring.

Let R be a Bezout ring whose quotient ring R/N(R) is a Goldie ring. In the view

of Corollary 5.1 R is an Hermite ring. Furthermore, QCl(R/N(R)) is a Bezout ring

with finitely many minimal prime ideals. Assume that an arbitrary prime ideal of

R is contained in unique maximal ideal. By Theorem 5.4 R/N(R) is an elementary

divisor ring and using Proposition 5.1 we obtain that R is an elementary divisor

ring. Consequently we obtain the following statement:

Theorem 5.5. Let R be a Bezout ring such that its arbitrary minimal prime ideal

is contained in a unique maximal ideal and the quotient ring by the nil-radical is

a Goldie ring. Then R is an elementary divisor ring.
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Now we consider the case of adequate rings.

Theorem 5.6. Every Hermite ring whose classical quotient ring is a Boolean ring

is an elementary divisor ring.

Proof. Let R be an Hermite ring such that QCl(R) is a Boolean ring. By Proposition

5.1 we can assume that R is a ring without nilpotent elements. Let P be an arbitrary

minimal prime ideal of R. Then for any a ∈ P an element 1/a ∈ QCl(R) is an

idempotent and, consequently the element a is also an idempotent. Thus we have

shown that the arbitrary element of any minimal prime ideal of R is an idempotent.

To prove the theorem it suffices to show that the matrix

A =

(

a 0

b c

)

,

where aR+bR+ cR = R, admits canonical diagonal reduction. First, we consider

the case when a is not an idempotent. Hence for arbitrary idempotent e ∈ R the

elements a(1− e) and ae are idempotents. Therefore

(

a 0

b c

)(

1− e−e

1 1

)

=

(

a(1− e)−ae

x y

)

,

where (a(1−e))2 = a(1−e) and (ae)2 = ae. If we denote a(1−e) = φ and ae= f

and assume that d = φ + f −φ f , then

(

φ f

x y

)(

1 − f

1−φ φ1

)

=

(

d 0

α β

)

,

where d2 = d and dR+αR+βR = R. We set r = 1−d+dβ and s = d+β −dβ .

As a result, we get β = rs, d = ds. Thus,

(

1 r

0 1

)(

d 0

α β

)

=

(

d + rα rβ
α β

)

= B.

It is obvious that (d+rα)R+rβR=R. Since R is an Hermite ring we establish that

the matrix B and, consequently, the matrix A admits canonical diagonal reduction.

If a is an idempotent, then using the reasoning presented above we complete the

proof of theorem. �

Theorem 5.7. Let R be a reduced Bezout ring that is a Goldie ring. Then an arbi-

trary minimal prime ideal of R is principal and is generated by an idempotent.
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Proof. The restrictions on R, imply that the classical quotient ring QCl(R) is an

artinian von Neumann regular ring with finitely many minimal prime ideals. Let P

be a minimal prime ideal of the ring R. Consider the ideal

PQ = {p/s | p ∈ P}.

It is obvious that PQ is a prime ideal of QCl(R). Thus, there exists an idempotent

e ∈ QCl(R) such that

PQ = eQCl(R).

Since R is a distributive ring then we have e ∈ R. For any p ∈ P we obtain that

p = er, where r is a von Neumann regular element. Hence,

ep = eer = er = p

and P⊂ eR. But e ∈ P so we get eR⊂ P and P = eR. Theorem is proved. �

The purpose of this section is to determine the structure of a commutative

Bezout ring in which for every nonzero and nonunit element a ∈ R the classical

quotient ring Q(R/J(aR)) is a von Neumann regular, where J(aR) is the Jacobson

radical of R/aR.

Definition 5.1. A ring R is called an almost Baer ring if for each x ∈ R there exists

an element y ∈ R such that Ann(xR) = yR.

Theorem 5.8. Let R be a reduced almost Baer ring. Then Q(R)/J(Q(R)) is a von

Neumann regular ring.

Proof. Let P be a prime ideal of R that is not a minimal one. By [ ] there exists an

element x ∈ P such that Ann(x) 6⊂ P. Let t ∈Ann(xR+yR), where yR = Ann(xR).
Then t(xu− yv) = 0 for each u,v ∈ R. Hence txu = tyv, where (txu)2 = txu · tyv =
xuvt2 ·y= 0 as y∈Ann(xR). Since R is reduced then txu= tyv= 0 for each u,v∈R.

Therefore t ∈Ann(xR) = yR and t = yw for some w ∈ R. Then t2 = tyw = 0 due to

the proved property of t. Since R is a reduced ring then t = 0 and Ann(xR+yR) =
0. Hence by [ ] x−y is a not a zero divisor in R. Therefore Q(R) is a ring in which

every prime ideal is maximal, i.e. Q(R) is zero-dimensional By [ ] Q(R)/J(Q(R))
is a von Neumann regular ring. Theorem is proved. �

Theorem 5.9. Let R is the Bezout domain and a ∈ R\{0}, then R/aR is an almost

Baer ring.

Proof. Suppose b ∈ R and bR ⊂ aR. Then (b : aR) = {r ∈ R | rb ∈ aR} = sR,

where a = bs, so (s : aR) = bR. Thus the annihilator of any principal ideal in R/aR

is principal. The Theorem is proved. �
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Theorem 5.10. Let R be a fractionally regular Bezout ring. Then R is a ring of

stable range 3.

Proof. Let a,b,c,d ∈ R and aR+bR+cR+dR = R and R = R/J(aR). Since Q(R)
is a von Neumann regular ring and st.r. = st.r.(R), we have by Lemma [ ] that

st.r.(R) = 2. Since bR+cR+dR=R and st.r.(R) = 2 then (b+dx)R+(c+dy)R=
R for some x,y ∈ R. We claim that

(a+d ·0)R+(b+dx)R+(c+dy)R = R.

If not then there would be a maximal ideal M for which a,b+dx,c+dy ∈M. But

this is impossible since this would imply that M/J(aR) is a maximal ideal of R

containing b+dx and c+dy. Consequently (a+d ·0)R+(b+dx)R+(c+dy)R =
R. Thus we have shown that R has stable range 3. The Theorem is proved. �

Theorem 5.11. [ ] Let R be a Bezout PM-ring such that minR is compact. Then

st.r.(R) = 1.

Theorem 5.12. Let R be a fractionally regular Bezout PM-ring. Then R is an ele-

mentary divisor ring.

Proof. Let R = R/J(aR) for nonzero and nonunit element a∈ R. By Theorem 5.11

R has stable range 1. Let aR+ bR+ cR = R. Since bR+ cR = R and st.r.(R) = 1

there is y ∈ R such that

(b+ cy)R = R.

We claim that (a+ c ·0)R+(b+ cy)R = R. In opposite case there would be some

maximal ideal M such that a,b+yc∈M. But this is impossible as this would imply

that M/J(aR) is a maximal ideal of R containing an invertible element b+ yc.

Consequently (a+0 ·c)R+(b+yc)R = R. We have shown that R has stable range

2 and by Theorem 3.2 R is an Hermite ring.

Furthermore, it is proved that if aR+bR+cR = R then there exists an element

y ∈ R, such that aR+(b+cy)R = R. By Theorem 3.6 R is elementary divisor ring.

Theorem is proved. �

Lemma 5.1. Let R be the Bezout ring, then the following statements are equiva-

lent.

1. R is semihereditary ;

2. minR is compact and R is reduced.
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Theorem 5.13. Every fractionally regular Bezout ring of a stable range 2 is an

elementary divisor ring.

Proof. By [43] it is sufficient to prove that a module M named by the matrix

A =

(

a 0

b c

)

,

where aR+bR+cR=R is a direct sum of cyclic R-modules. By [ ] is easy to check

that M is an R/acR - module. Let J = J(acR). Since R is fractionally regular then

R= R/J is semihereditary. Thus, M =M/J(M) is the module named by the matrix

A =

(

a 0

b c

)

.

Since R is semihereditary an ac = 0 there is an idempotent e ∈ R such that a = ea

and b = (1−e)b. By [ ] it is easily seen that Me is named by ea as an eR - module

and M(1− e) is named by (1− e)a as (1− e)R-module. The rings e and (1− e)R
are the homomorphic images of R, so are Hermite and there exist the invertible

matrices P1 ∈M2(eR) and Q1 ∈M2((1− e)R) such that

P1ea =

(

s 0

0 0

)

,(1− e)aQ1 =

(

0 0

0 t

)

.

If we denote by P = (1− e)e+P1 and Q = ee+P1, where E is 2 by 2 identity

matrix over R then P, Q are invertible matrices over R such that

PAQ =

(

s 0

0 t

)

.

By [ ] we may assume that s divides t. It is obviously, that R = aR+bR+cR = sR

and s is a unit of R. It follows that M is a cyclic R-module. By Nakayama lemma it

follows that M is also cyclic over R/acR. Hence M is cyclic over R. It follows that

M ∼= R/tR by [ ] so every finitely presented R - module is a direct sum of cyclic

modules. By [ ] R is an elementary divisor ring. Theorem is proved. �

Theorem 5.14. Let R be a Bezout ring of stable range 2 of right Krull dimension.

Then R is an elementary divisor ring.

Proof. Let a ∈ R\{0}, a /∈U(R) and R = R/J(aR). Then R is an Hermite reduced

ring with right Krull dimension. By [ ], R is an S-ring, and every principal ideal of

R is projective. By [ ], R is a fractionally regular Hermite ring. By Theorem 5.13,

R is an elementary divisor ring. Theorem is proved.
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Theorem 5.15. Let R be a Bezout ring of stable range 2 with Noetherian spectrum.

Then R is an elementary divisor ring.

Proof. Since every ideal of R contains only finitely many minimal prime ideals [ ],

then for every a ∈ R \ {0} the ring R/J(aR) is a semiherieditary ring and R is a

fractionally regular Bezout ring of a stable range 2 [ ]. By Theorem 5.14 R is an

elementary divisor ring. Theorem is proved. �

5.2 Semiregularity of zero-adequate rings

In this section we will prove that for a commutative Bezout ring the semiregularity

condition is precisely the same as the adequacy requirement of its zero element.

We start with a few results concerning the Jacobson radical of such rings.

Theorem 5.16. Let R be a commutative ring such that zero is an adequate element

of R. Then 0 = 0+ J(R) is an adequate element of the quotient-ring R/J(R).

Proof. Let R = R/J(R) and b = b+J(R) be any element of R. Then 0 = rs, where

rR+ bR = R and s′R+ bR 6= R for any nonunit divisor s′ of s. Let R = r+ J(R),
s = s+ J(R). Therefore RR+ bR = R, s′R+ bR 6= R. Let t be nonunit divisor of

s ∈ R. Then there exist j ∈ J(R) and k ∈ R such that s+ j = tk. If sR+ tR = R then

su+ tu = 1 for some elements u,v ∈ R. Hence tku− ju+ tv = 1 and tku+ tv =
1+ ju. Since j ∈ J(R) then tku+tv is unit element of R and hence t is unit element

of R that contradict the choice of t ∈ R.

Therefore t is a nonunit element of R and

sR+ tR = kR 6= R.

Since k is a nonunit divisor of s then kR+ bR 6= R. Inasmuch kR+ bR 6= R and

tR+bR 6= R then 0 is an adequate element of R. Theorem is proved. �

In the following theorem we describe the elements of commutative Bezout ring

where zero is an adequate element via of Jacobson radical.

Theorem 5.17. Let R be a commutative Bezout ring in which zero is an adequate

element. Then for any nonunit element b∈ R there exist idempotent e∈ R such that

be ∈ J(R) and eR+bR = R.

Proof. By the adequacy of zero element there are s,r ∈ R such that 0 = rs, where

rR+bR = R, and s′R+bR 6= R for any nonunit divisor s′ of s. As we shown many

times before
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rR+ sR = R.

Hence ru+ sv = 1 for some elements u,v ∈ R and obviously r2u = r, s2u = s. If

we denote by e = ru then e2 = e, 1− e = sv and eR+bR = R.

Since eR+ bR = R then rux+ by = 1 for some elements x,y ∈ R and hence

svrux+ svby = sv, i.e 1− e ∈ bR. Therefore we obtain an inclusion mspec(b) ⊂
mspec(1−b).

Suppose there is M ∈mspec(1−b) and b /∈M. Hence M+bR=R, i.e. m+bt =
1 for some elements m ∈M, t ∈ R. Let

(1− e)R+mR = dR.

Since 1−e∈M, m∈M then d ∈M. Recall that sv = 1−e and d is nonunit divisor

of sv. Since s2v= s then d is also a nonunit divisor of s. Then bR+dR 6=R. But R=
bR+mR⊆ bR+dR 6= R that is impossible. Therefore mspec(b) = mspec(1−b).

Since mspec(e)∪mspec(1− e) = mspec(R) then for the arbitrary maximal

ideal M of R there are only two possibilities:

1. M ∈mspec(e);

2. M ∈mspec(1− e).

If M ∈mspec(e), then be∈M. Otherwise M ∈mspec(1−e) =mspec(b), so b∈M

and hence be ∈M. As a result we obtain that be ∈ J(R) as was desired. �

Theorem 5.18. Zero element is an adequate in a commutative semiprime Bezout

ring R if and only if R is a von Neumann regular ring.

Proof. By Theorem 5.17 for any nonunit element b ∈ R there exists an idempotent

e ∈ R such that

be ∈ J(R), eR+bR = R.

Since J(R) = 0 then be = 0 and the equality eR+bR = R implies that

bu+ ev = 1

for some elements u,v ∈ R. Hence b2u = b, i.e. b is a von Neumann regular ele-

ment. Theorem 4.2 completes the proof. Theorem is proved. �

By Theorems 5.16 and 5.18 we have the following result.

Theorem 5.19. Let R be a commutative Bezout ring. The following statements are

equivalent:
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1. zero is an adequate element of R;

2. R is a semiregular ring.

Using Theorem 5.19 we obtain:

Theorem 5.20. A commutative Bezout domain R is an adequate domain if and

only if R/aR is a semiregular ring for any nonzero element a ∈ R.

5.3 Avoidable rings

A commutative adequate Bezout domain can be determined as a commutative Be-

zout ring in which every finite homomorphic images are semiregular ring. What

kind a commutative Bezout domain in which every finite homomorphic images

are clean (exchange) ring?

Definition 5.2. A commutative ring is said to be an avoidable ring if for any ele-

ments a,b,c ∈ R, c 6= 0 such that aR+ bR+ cR = R there exist elements r,s ∈ R

such that c = rs, where rR+aR = R, sR+bR = R and rR+ sR = R.

Theorem 5.21. Let R be a commutative ring. If R is an avoidable ring then for any

c ∈ R\{0} the quotient ring R/cR is a clean ring. If R is a Bezout domain and for

any c ∈ R\{0} the factor ring R/cR is a clean ring then R is an avoidable ring.

Proof. Let R be a commutative Bezout domain. Denote by R = R/cR and a =
a+ cR, b = b+ cR. Since R is a clean ring, then there exists an idempotent e ∈ R

such that

e ∈ aR, (1− e) ∈ bR.

Since e ∈ aR than e−ap = cs for some elements p,s ∈ R. Similarly

1− e+bα = cβ

for some elements α,β ∈ R. After the substitution of e = cs+ ap into 1− e =
bα + cβ we will get

apR+bR+ cR = R.

Since e = e2 then e(1− e) = ct for some element t ∈ R. Let eR+ cR = dR. Since

R is a commutative Bezout domain we have

e = de0, c = dc0,
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where e0R+c0R = R. As e(1−e) = ct and e0R+c0R = R we have e+c0 j = 1 for

some element j ∈ R. Taking r = c0, s = d we obtain a decomposition c = rs where

rR+ eR = R and sR⊂ eR. Since e = ap+ cs then

rR+apR = R, sR⊂ apR.

If sR⊂ apR then sR+bR = R. Obviously rR+ sR = R and rR+aR = R.

For the converse statement let R be an avoidable ring, aR+ bR+ cR = R and

c = rs, where rR+ sR = R, rR+aR = R and sR+bR = R. Denote

R = r+ cR, s = s+ cR.

Since rR+sR = R then one has ru+sv = 1 and R
2
u = R, s2v = s for some u,v∈ R.

Let sv= e. Then clearly e2 = e and 1−e=Ru. Since rR+aR=R then aβe= e

for some element β ∈ R.

Similarly bx(1−e) = 1−e for some element x∈ R. Therefore, we have proved

that if aR+bR = R then there exists an idempotent e ∈ R such that

e ∈ aR, (1− e) ∈ bR.

Hence R is an exchange ring and by Proposition 2.17 R is also a clear one. The

theorem is proved. �

Theorem 5.22. Every commutative adequate Bezout domain R is an avoidable

ring.

Proof. Let aR+bR+cR= R and c 6= 0. Since R is an adequate domain then c= rs,

where rR+aR = R and s′R+aR 6= R for any nonunit divisor s′ ∈ R of element s.

Obviously rR+ sR = R (see proof of Theorem 4.12).

Let sR+ bR = dR 6= R. Since d is nonunit divisor of an element s then dR+
aR = hR 6= R by the adequacy of a ∈ R. As cR⊂ dR⊂ hR, bR⊂ dR⊂ hR, aR⊂
hR, then we have that aR+bR+cR⊂ hR 6= R. It is impossible because aR+bR+
cR = R. Theorem is proved. �

By the straightforward consequence of Theorem 5.21 and the fact that a clean

ring ia a PM-ring we have the following result.

Theorem 5.23. An avoidable domain is a domain in which every nonzero prime

ideal is contained in a unique maximal ideal.

Similarly to the definition of avoidable ring we can define an avoidable ele-

ment.
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Definition 5.3. An element a of a commutative ring R is said to be an avoidable

element if for any elements b,c∈R such that aR+bR+cR=R there exist elements

r,s ∈ R such that a = rs, where rR+bR = R, sR+ cR = R and rR+ sR = R.

According to the proof of Theorem 5.22 we have a next result.

Proposition 5.2. Any adequate element of a commutative Bezout domain is an

avoidable element.

Theorem 5.24. Let a be an avoidable element of a commutative Bezout domain.

Then zero is an avoidable element of the quotient-ring R/aR.

Proof. Let R = R/aR and

bR+ cR = R,

where b = b+aR, c = c+aR. By the assumption there are r,s∈ R such that a = rs,

where rR+bR=R, sR+cR=R and rR+sR=R. Taking the images in the quotient

ring R we obtain 0 = Rs, where RR+bR = R, sR+ cR = R and RR+ sR = R. �

Theorem 5.25. A commutative ring R is clean if and only if 0 is an avoidable

element.

Proof. Let 0 = rs and bR+cR = R where rR+bR = R, sR+ cR = R and rR+sR =
R. Since rR+ sR = R, then

ru+ sv = 1

for some elements u,v∈ R. Since 0 = rs, then r2u = r, s2v = s. If we denote e = ru

then e2 = e and 1− e = sv. Since rR+bR = R then

rα +bβ = 1

for some elements α,β ∈ R.

Therefore, svbβ = sv, i.e. 1− e ∈ bR, and similarly e ∈ cR. Hence R is an

exchange ring. Since R is a commutative ring then by Proposition 2.17 R is a clean

ring. The necessity is proved.

For the sufficiency we need to show that in any clean ring zero is an avoidable

element. Let bR+cR = R. The commutative clean ring is the same as an exchange

one due to Proposition 2.17, so R is an exchange ring. Then there exists an idem-

potent e ∈ R such that e ∈ bR and (1− e) ∈ cR. Since 0 = e(1− e) we obtain

(1− e)R+bR = R,

eR+ cR = R and eR+(1− e)R = R.

If we take r = 1−e, s = e then we obtain a desired representation of zero element.

Theorem is proved. �
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Theorem 5.26. Let R be a commutative Bezout domain. If 0 is an avoidable ele-

ment of R/aR then a is an avoidable element of R.

Proof. Let R = R/aR. Since zero is an avoidable element of R then for any ele-

ments b,c ∈ R such that bR+ cR = R there exist r,s ∈ R such that 0 = Rs, where

RR+bR= R sR+cR= R and RR+sR= R. Let R= r+aR, s= s+aR, b= b+aR,

c = c+ aR. Then bR+ cR = R implies that aR+ bR+ cR = R. As RR+ bR = R

then are elements u,v, t ∈ R such that

ru+bv = 1+at.

Let aR+ rR = δR. Then a = δa0, r = δ r0 and a0R+ r0R = R for some elements

a0,r0 ∈ R. Since ru+bv = 1+at then we obtain δR+bR = R.

Inasmuch 0 = Rs we obtain rs = aα for some element α ∈ R. Then δ r0s =
δa0α . As R is a domain then r0s = a0α . Since r0R+ a0R = R then there are ele-

ments t,k ∈ R such that

r0t +a0k = 1.

The latter means that a0β = s for some element β ∈ R. Therefore a = δa0 where

δR+bR = R and sR⊂ a0R. Since sR+ cR = R then a0R+ cR = R. Finally, RR+
sR = R implies that δR+ a0R = R. Thus we have shown that a is an avoidable

element. Theorem is proved. �

As an obvious consequence we obtain the following result.

Theorem 5.27. Let R be a commutative Bezout domain such that for any nonzero

element a ∈ R zero element of R/aR is avoidable. Then R is an avoidable ring.

5.4 Effective and Dirichlet rings

Among the commutative Bezout domains whose finite homomorphic images are

semipotent (or a commutative Bezout domains whose every nonzero element is

semipotent) we introduse a new class of rings and call them effective. Furthermore,

we will prove that effective rings are elementary divisor rings.

Definition 5.4. A commutative Bezout domain is said to be effective if for any

elements a,b,c ∈ R such that aR+ bR+ cR = R and cR+ bR 6= R there exists an

element p ∈ R such that aApc and pR+bR+aR = R
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An obvious example of effective domain is any adequate ring. Henriksen’s

example (see Example 4.3) R = {z0+a1x+a2x2+ . . . |z0 ∈ Z,ai ∈Q} is an effec-

tive ring that is not adequate. Notice that in Henriksen example given the equality

aR+bR = R it follows that a or b is an adequate element.

Theorem 5.28. Every effective domain is an elementary divisor ring.

Proof. Let aR+bR+ cR = R. Let aR+bR = R and

A =

(

a b

0 c

)

.

To prove this theorem it is enough to show that the matrix A admits the canonical

diagonal reduction. The cases aR+ bR = R, bR+ cR = R and aR+ cR = R are

obvious. By the definition of an effective ring there is some element q∈R such that

aAcq and aR+bR+cqR = R. Since a = ps where pR+cqR = R and s′R+cqR 6= R

for any s′ ∈ R such that sR ⊂ s′R 6= R. Let’s show that apR+ (bq+ cq)R = R.

Suppose the contrary, that is apR+(bq+cq)R = hR 6= R. Since ap = p2s, then let

pR+hR = dR 6= R. As pR⊂ dR and hR⊂ dR we have cqR⊂ hR that is impossible

since pR+ cqR = R. Thus sR ⊂ hR. By the definition of element s we have that

hR+cqR = kR 6= R. Let kR+cR = xR 6= R. Then bpR⊂ xR and aR⊂ xR, cR⊂ xR

and aR+bR+ cR = R then xR+bR = R. So pR ⊂ xR that is impossible as pR+
sR = R. As a result we have qR⊂ kR. Then bpR⊂ kR. If bR+ kR = αR 6= R then

aR⊂ αR, bR⊂ αR and qR⊂ αR. Using the fact that aR+bR+qR = R we obtain

a contradiction, so α must be a unit. Hence pR ⊂ kR, but this is also impossible

as pR+ sR = R and sR ⊂ kR. So, we have proved that apR+ (bp+ cq)R = R.

By Theorem 3.6 we have shown that A admits the canonical diagonal reduction.

Theorem is proved. �

In the previous chapter we have studied neat rings as rings whose homomor-

phic images are exchange ones. We’ll show that in the case of commutative Be-

zout rings neat rings are effective. To complete this purpose we need the following

proposition.

Proposition 5.3. A commutative ring R is an exchange ring if and only if for any

pair of elements a,b ∈ R such that aR+bR = R there is an idempotent e ∈ R such

that e ∈ aR and (1− e) ∈ bR.

Proof. By [ ] in every exchange ring equality aR+ bR = R implies that there are

orthogonal idempotents e and 1− e that e ∈ aR and (1− e) ∈ bR. The sufficiency

is obvious. Proposition is proved. �



62 5 Finite homomorphic images

Theorem 5.29. Let R be a commutative Bezout domain and for any quotient ring

a ∈ R\{0} R/aR is an exchange ring. Then R is an effective ring.

Proof. Let R = R/aR be an exchange ring for any a ∈ R\{0}. By Proposition 5.3

the equality cR+bR = R implies that we can find an idempotent e ∈ R, such that

e ∈ cR and 1− e ∈ bR. Let’s notice that the equality cR+ bR = R implies, that

aR+bR+cR=R. Since e∈ aR then there is some element p∈R such that e−cp=
as for some element s∈ R. Similarly 1−e−bα = aβ for some elements α,β ∈ R.

Substituting e = as+ cp in 1− e−bα = aβ we’ll get cp+aw+bα = 1 for some

element w ∈ R. The latter means that pR+ aR+ bR = R. Let’s prove that aAcp.

Since e = e2 then e(1− e) = at for some element t ∈ R. If we consider an ideal

eR+ aR = dR, we have e = de0 and a = da0 for some elements e0,c0 ∈ R such

that e0R+a0R = R. Then e0(1− e) = a0t, and then e+ c0γ = 1, for some element

γ ∈ R. Taking r = a0, s = d we obtain a decomposition a = rs, where rR+eR = R

and sR⊂ eR. So we have aAe. Since e = as+cp then by Proposition 5.28 we have

aAcp. Theorem is proved. �

Proposition 5.4. Let R be a commutative Bezout domain, which for any elements

a,b,c ∈ R that aR+ bR+ cR = R there exists an element p ∈ R such that aAcp.

Then pR+ aR+ bR = R and a = rs where rR+ cpR = R and s′R+ apR 6= R, for

any nonunit divisor s′ of element s if and only if sR+bR = R.

Proof. Let a = rs where rR+ pR = R and s′R+cpR 6= R for any nonunit divisor s′

of element s. If pR+aR+bR = R then cpR+aR+bR = R. If sR+bR = δR 6= R

then δR+ cpR = hR 6= R. It is impossible, since cpR+aR+bR = R.

Suppose sR+ bR = R. We need to prove that cpR+ bR+ aR = R. If pR+
bR + aR = hR 6= R, then pR ⊂ hR, aR ⊂ hR. Since rR + cpR = R then h is a

nonunit divisor of s. By bR⊂ hR and sR⊂ hR we have that sR+bR⊂ hR 6= R. It

is impossible since sR+bR = R. Proposition is proved. �

Theorem 5.30. Let R be a commutative Bezout domain in which for any elements

a,b,c ∈ R such that aR+ bR+ cR = R there exists such element p ∈ R that aAcp

and pR+bR+aR = R. Then R/aR is an exchange ring.

Proof. Let R = R/aR and cR+bR = R, where c = c+aR, b = b+aR. Then aR+
bR+cR = R and there exists an element p∈ R such that a = rs, where rR+cpR =
R and s′R+ cpR 6= R for each nonunit divisor s′R of s, and pR+ bR+ aR = R.

Obviously ru+ sv = 1 for some element u,v ∈ R.

Hance R
2
u = R, s2v = s and e = sv, e2 = e, Ru = 1− e and sR = eR,

(1− e)R = RR. By Proposition 5.4, we obtain sR+bR = R as we have RR ⊂ bR.
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Since rR+ cpR = R then sR ⊂ cR, i.e. we have eR ⊂ bR and (1− e)R ⊂ cR. By

Proposition 5.29 R/aR is an exchange ring. Theorem is proved. �

5.5 Neat range one

As it was proved in the previous section a commutative Hermite ring is precisely

a Bezout ring of stable range 2. There is a similar description of commutative

elementary divisor rings.

Definition 5.5. A commutative ring R is said to be a ring of neat range 1 if for

any a,b,c ∈ R such that aR+bR = R and for any c ∈ R\{0} there exists u,v, t ∈ R

such that a+bt = uv, where uR+ cR = R, vR+(1− c)R = R and uR+ vR = R.

An obvious example of a ring of neat range 1 is any ring of stable range 1.

Proposition 5.5. Let R be a commutative Bezout ring and let a is an element of R

such that for any c ∈ R there are u,v ∈ R such that a = uv where uR+ cR = R,

vR+(1− c)R = R and uR+ vR = R. Then R/aR is a clean ring.

Proof. Let’s introduce notations R = R/aR, u = u+ aR, v = v+ aR. Since uR+
vR = R, then ru+sv = 1 and Ru2 = u, sv2 = v, where R = r+aR, for some r,s∈ R.

Let sv = e, obviously e2 = e, s = s+aR and 1−e = Ru. Since uR+cR = R we

have csvβ = sv for some element β ∈ R. Similarly

(1− c)ruα = ru

for some element α ∈ R. Therefore, for any element c ∈ R there exists an idempo-

tent e ∈ R such that

e ∈ cR, 1− e ∈ (1− c)R,

i.e. R is an exchange ring. Since R is a commutative ring then R is a clean ring by

Proposition 2.17. Proposition is proved. �

Proposition 5.6. Let R be an Hermite ring and for any coprime triple a,b,c ∈ R

there exist p,q ∈ R such that paR+ (pb+ qc)R = R. Then there exist elements

t,u,v ∈ R such that b+ tc = uv, where uR+aR = R and vR+ cR = R.

Proof. Since paR+(pb+qc)R = R, then pR+(pb+qc)R = R. The latter implies

that pR+ cR = R that is pv+ c j = 1 for some v, j ∈ R. Therefore, v(pb+ qc) =
b+ ct for some t ∈ R. Moreover vR+ cR = R and if we denote u = pb+ qc then

uR+aR = R. Proposition is proved. �
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Proposition 5.7. Let R be a commutative Hermite ring and for any a,b,c ∈ R such

that aR+ bR+ cR = R there exists t ∈ R such that b+ tc = uv and vR+ cR = R,

uR+aR = R. Then there are p,q∈ R such that aR+(pb+qc)R = R, pR+cR = R.

Proof. Since vR+ cR = R then pv+ c j = 1 for some p, j ∈ R. Therefore

pb = p(uv− tc) = puv− ptc = u− cq

for some q ∈ R. Hence (pb+qc)R+aR = R, pR+ cR = R. Proposition is proved.

�

Theorem 5.31. A commutative Hermite ring R is an elementary divisor ring if and

only if R is a ring of neat range 1.

Proof. Let aR+bR+cR=R. Since R is an Hermite ring then bR+cR= dR, by the

Theorem 3.1 we have b= b1d, c= c1d where b1R+c1R=R. Since aR+bR+cR=
R then aR+dR = R. Hence

ax+dd1 = 1

for some x,d1 ∈ R. Therefore 1−dd1 ∈ aR. Since R is a ring of neat range 1, then

b1 + tc1 = u1r where

u1R+(1−dd1)R = R, rR+dd1R = R.

Let u = u1d. Since 1− dd1 ∈ aR and u1R+ aR = R then uR+ aR = R. Consider

the expression

b+ tc = (b1 + tc1)u = ru.

Since vR+dd1R = R then vR+dR = R. Hence

vR+ cR = vR+ c1dR = vR+ c1R.

Moreover, as b1+ tc1 = uv1 then vR+c1R = R and consequently vR+cR = R. By

Propositions 5.5 and 5.6 we obtain that R is an elementary divisor ring.

Conversely, let R be an elementary divisor ring and let xR + yR = R and

z ∈ R\{0}. By Proposition 5.5 taking a = z, b = x, c = (1− z)y we have

zR+ xR+(1− z)yR = aR+bR+ cR.

Hence x+ t(1− z)y = vu, where vR+y(1− z)R = R and uR+ zR = R. If µ = 1− z

then x+µy = ru where

vR+(1− z)R = R, uR+ zR = R.

Note that the elements u and v can be chosen such that uR+ vR = R, and finally

we have proved that R is a ring of neat range 1. Theorem is proved. �
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The following fact establishes the connection between the different ranges de-

fined for the ring R. Especially, we will derive the connection between the intro-

duced neat range 1 and the stable range of the ring.

5.6 Meaningful ring

Here we will investigate commutative Bezout domains whose finite homomorphic

images are semipotent rings.

Let’s start our research with a few simple useful properties of adequacy.

Proposition 5.8. Let R be a commutative Bezout domain and a ∈ R is some nonzero

element. Then aAb if and only if aAb+at for any element t ∈ R.

Proof. Assume a is a adequate to the element b in R. By definition there are some

elements r,s ∈ R such that a = rs where rR+bR = R as well as s′R+bR 6= R for

any nonunit divisor s′ of s. Taking arbitrary t ∈ R we consider the ideal

rR+(b+at)R = hR.

As aR ⊂ rR ⊂ hR and (b+ at)R ⊂ hR then bR ⊂ hR that is impossible because

rR+bR = R. Hence h ∈U(R).
Since s′R+bR 6= R for any nonunit divisor s′ of s then

s′R+(b+at)R 6= R

too. Thus we obtained that aAb+at for any element t ∈ R and necessity is proved.

For the converse statement suppose that aAb+at , that means that one can find

some elements r,s∈R such that a= rs where rR+(b+at)R=R, s′R+(b+at)R 6=
R for some nonunit divisor s′ of s.

If rR+ bR = hR 6= R for some element h then aR ⊂ rR ⊂ hR and bR ⊂ hR

implies (b+at)R that is impossible because rR⊂ hR.

Next assume that there is some element s′ ∈ R such that sR ⊂ s′R 6= R,

s′R+ bR = R. Then s′R+(b+ at)R = hR 6= R and hR ⊂ bR that contradicts the

assumption s′R+bR = R. Proposition is proved. �

Proposition 5.9. Let R be a commutative Bezout domain and aAb. Then element

b = b+aR is a clean element in R = R/aR.

Proof. Since a is adequate to the element b in a Bezout domain R then there are

some elements r,s ∈ R such that a = rs where rR+bR = R and s′R+ bR 6= R for

any nonunit divisor s′ of s. Going down to factor-ring R we have



66 5 Finite homomorphic images

RR+bR = R

and

s′R+bR 6= R

where R = r+aR, s′ = s′+aR. Really if you have RR+bR = R then

s′−bβ = 1+aα

for some elements α,β ∈ R. Since aR⊂ s′R we have s′R+bR = R. This is impos-

sible since s′ is a nonunit divisor of s.

Let t be some nonunit divisor of s ∈ R, where t = t + aR. Then there is some

element k ∈ R such that

(s+ak)R⊂ tR.

Let’s show that sR+ tR 6= R. Suppose the contrary, that is sR+ tR = R. Since

(s+ak)R⊂ tR,

then

s+ak = tβ

for some element β ∈R. Equality s+rsk = tβ implies s(1+rk)= tβ . As sR+tR=
R then

(1+ rk)R⊂ tR,

so rr + tR = R. Since tR+ sR = R and tR+ rR = R we have tR+ rsR = R, i.e.,

tR+aR = R. From here tR = R it is impossible since t is a nonunit divisor s ∈ R.

Thus we have proved that sR+ tR = uR and uR 6= R. This means

tR+bR 6= R.

So we obtained that 0 = Rs is an adequate element for the element b, i.e., 0Ab.

Obviously RR+ sR = R, i.e., Ru+ sv = 1 for some element u,v ∈ R.

Additionally, we have

(Ru)2 = Ru,

and

(sv)2 = sv.

Let denote e = Ru. Now we want to prove that b− e is a unit in R. Suppose that

(b− e)R = hR 6= R.
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Consider an ideal

hR+RR = tR.

If t is nonunit in R then

(b− e)R⊂ hR⊂ tR.

Since RR = eR, we have

bR⊂ tR.

This is impossible since

RR⊂ hR,

and bR⊂ hR but bR+RR = R. So hR+RR = R.

Now we will prove that

hR+ sR = R.

Assume that

hR+ sR = tR 6= R.

Since t is a nonunit divisor of s we have

tR+bR = kR 6= R.

On the other hand

(b− e)R = hR

and

eR+ sR = R,

so we have that eR+ tR = R implies eR ⊂ kR. Last inclusion is impossible since

bR⊂ kR. At last we have that sR+hR = R. Since

RR+hR = R

and

RsR+hR = R.

As we know 0 = Rs, then h is a unit of the ring R. So we have proved that b−e = u

is a unit in a ring R and hence b = e+u is a clean element. Proposition is proved.

�

We note that c = c+aR is a unit element of R/aR if and only if cR+aR = R.

Really if cR+aR = R then cu+av = 1 for some elements u,v∈ R. Then cu+av =
1 and cu= 1. Obviously if cx= 1 for some element x= x+aR we have cx= 1+ay

for some element y ∈ R. Here from cR+aR = R.
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By the Proposition 5.9 we have if aAb then b = ru+c+at where cR+aR = R

and t is a some element of R. And where a = rs, rR+bR = R and s′R+ bR 6= R

for some nonunit divisor s′ of s and ru+ sv = 1.

Since ruR+bR = R we obtain the following criterion.

Proposition 5.10.

Definition 5.6. [ ] An element a ∈ R is said to be an exchange element if there

exists idempotent e ∈ R such that e ∈ aR and 1− e ∈ (1−a)R.

Definition 5.7. [ ] An element a ∈ R is said to be an element of idempotent stable

range 1 if aR+bR = R and there exists idempotent e ∈ R such that a+be is a unit

element of R for any element b ∈ R.

By [ ] and Proposition 5.9 we have a next result.

Theorem 5.32. Let R be a commutative Bezout domain and aAb. Then

1. b = b+aR is a clean element of R/aR;

2. b = b+aR is an exchange element of R/aR;

3. b = b+aR is element of idempotent stable range 1 of R/aR.

Put the following questions:

Question 5.1. Let R be a commutative Bezout domain and a ∈ R\{0}. Let b =
b+aR ∈ R/aR is a clean element. Whether aAb?

The answer on this question is the following result.

Definition 5.8. Let R be a commutative Bezout domain. Say that an element a ∈ R

is an avoidable for b ∈ R if a = rs where rR+bR = R and sR+(1−b)R = R and

rR+ sR = R. This fact is denoted aRb.

Proposition 5.11. Let R be a commutative Bezout domain. If aAb then aRb.

Proof. Let a = rs where rR+ bR = R and s′R+ bR 6= R for some nonunit divisor

s′ of s. Obviously we have that rR+ sR = R. Show that sR+(1−b)R = R. Let

sR+(1−b)R= hR 6=R. Since h is nonunit divisor of s we have hR+bR= δR 6=R.

Let h = δh0, b = δb0. Since sR+(1−b)R = hR we have su+(1−bv = h for some

u,v ∈ R and s = δ s0, 1− b = ht for some s0, t ∈ R. Then sR ⊂ δR and 1− b ⊂
δR, i.e., δR+ bR = R. This is impossible since sR ⊂ δR 6= R and δR+ bR 6= R.

Therefore aRb. Proposition is proved. �
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Theorem 5.33. Let R be a commutative Bezout domain. Then aRb if and only if

an element b = b+aR is exchange (clean, idempotent stable range 1) element in

R/aR.

Proof. Let aRb then a= r0s where rR+bR=R, sR+(1−b)R=R and rR+sR=R.

Since rR+ sR = R, then ru+ sv = 1 for some u,v ∈ R. Since Rs = 0 we have

R
2
u = R, s2v = s and Ru = e, su = 1− e where e2 = e. Since rR+ bR = R we

have rx+by = 1 for some element x,y∈ R. Then svby = sv, i.e., (1−e)by = 1−e,

1− e ∈ bR. Similar to that shown e ∈ (1−b)R, i.e., b is an exchange element and

hence b is a clean (idempotent stable range 1) element.

Let b = b+aR is an exchange element in R/aR. Then there exist idempotents

e such that e ∈ bR and 1− e ∈ (1− b)R. Since e ∈ bR one has that e− bp = as

for some elements p,s ∈ R. Similarly 1− e− (1− b)α = aβ for some elements

α,β ∈ R.

Since e2 = e we obtain e(1−e) = at for some element t ∈R. Let eR+aR= dR.

We have e = de0, a = da0 where e0R+ a0R = R. Since e(1− e) = at and R is a

domain. We have e0(1− e) = a0t.

Since e0R+a0R = R we have e+a0 j for some element j ∈ R. Taking r = a0,

s = d we obtain the decomposition a = rs where rR+ eR = R and rR⊂ eR. Since

e = ap+as we have rR+bpR = R, sR⊂ bpR⊂ bR. Then sR+(1−b)R = R and

rR+bR = R and rR+ sR = R, i.e., aRb. Theorem is proved. �

Return to our sheep. We know, that if R is a commutative Bezout domain and:

1. if a ∈ R \ {0} and for any b ∈ R there is a decomposition a = rs, where rR+
bR = R, sR+(1− b)R = R and rR+ sR = R then R/aR is an exchange (clean,

idempotent stable range 1) ring;

2. if for any a∈R\{0} and b∈R there is a decomposition a= rs, where rR+bR=
R, sR+(1−b)R = R then R is a domain in which every nonzero prime ideal is

contained in unique maximal ideal.

As in the mentioned results the mentioned results the properties of R/aR de-

pends on the type of the decomposition a = rs we naturally ask the following:

Question 5.2. Let R be a commutative Bezout domain and a ∈ R\{0} is such that

for any b∈ R there is a decomposition a = rs, where rR+bR = R and rR+sR = R.

What one can prove about R/aR?

The following result answers this question.



70 5 Finite homomorphic images

Theorem 5.34. Let R be a commutative Bezout domain, a∈ R\{0} and let for any

b ∈ R there is a decomposition a = rs, where rR+bR = R and rR+ sR = R. Then

R = R/aR is a semipotent ring and the converse is also true.

Proof. The equality rR+sR = R implies that ru+sv = 1 for some element u,v∈ R

and R
2
u = R and s2v = s. Obviously Ru = e and e2 = e and 1−e = sv. Similarly as

rR+bR = R then 1− e ∈ bR. Since 1− e is an idempotent, then R is a semipotent

ring. Note that if b /∈ J(aR) then 1− e is a proper idempotent. Really, if for any

maximal M that contains an element a we have b ∈M then r is a unit element, and

the converse is also true.

Let for b = b+ aR we have that there exists an idempotent e = e2 such that

e ∈ bR. Since e2 = e then e(1− e) = aα for some α ∈ R. As e ∈ bR then e−
bt = as for some elements t,s ∈ R. Let eR+ aR = dR then e = de0, a = da0 and

a0R+e0R = R. Factoring out element d from the equality e(1−e) = aα we obtain

e0(1− e) = a0α . Also, as a0R+ e0R = R then aR+ e0R = R. Taking r = a0, s = d

we get that rR+bR = R (since e−bt = as) and rR+ sR = R. Theorem is proved.

�

Definition 5.9. Let R be a commutative Bezout domain. An element a ∈ R\{0} is

said to be a semipotent element in R if R/aR is a semipotent ring.

Since an exchange ring is a semipotent ring then every avoidable element is

obviously, a semipotent one.

In the following result we establish the connection concepts of adequate ele-

ments and semipotent ones.

Theorem 5.35. Let R be a commutative Bezout domain. a ∈ R is a semipotent

element then for any element b /∈ J(aR) there exists some element u ∈ R that aAbu.

Proof. Let R = R/aR be a semipotent element and b /∈ J(aR). By the semipotency

of R for b = b+aR there is some nonzero idempotent e such that e2 ∈ bR. Hence

we can find elements u, t ∈ R such that e− bu = at. Moreover, as e2 = e then

e(1− e) = as for some element s ∈ R. Let eR+aR = dR, where e = de0, a = da0

and e0R+ a0R = R. Cancellating 2 we get e0(1− e) = a0s and e+ a0 j = 1 for

some element j ∈ R. Taking r = a0, s = d we obtain a decomposition a = rs,

where rR+ eR = R and s′R+ eR 6= R for some nonunit divisor s′ of s.

Thus aAe and by Proposition 5.8 the equality bu = e+at implies aAbu . Theo-

rem is proved. �

It is worth to note that in general if aAbc in a commutative Bezout domain R

then it is not true that aAb or aAc. As a corollary of previous theorems we obtain

the following result.
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Theorem 5.36. Let R be a commutative Bezout domain. An element a ∈ R is

semipotent if and only if for any element b /∈ J(aR) there exists some element

u ∈ R such that aAbu, bu /∈ aR.

5.7 Bezout morphic rings and units lifting

Proposition 5.12. If R is a commutative Bezout domain and 0 6= a ∈ R, then R/aR

is a morphic ring.

Proof. Suppose b ∈ R and Ra⊆ Rb. Then

(b : a) = {r ∈ R | rb ∈ Ra}= Rs,

where a = bs, so (b : a) = Ra. Thus the annihilator of any principal ideal of R/Ra

is principal ideal. And we also shows that every principal ideal of R/Ra is the

annihilator of principal ideal. Moreover, if I1 = Ann(J1), I2 = Ann(J2) with Ii, Ji

principal ideals we have

Ann(I1∩ I2) = Ann(Ann(J1)∩Ann(J2)) = Ann(Ann(J1 + J2)) = J1 + J2 =
Ann(J1)+Ann(J2).

By Lemma 2.2 we have, that R/Ra is morphic ring. �

Theorem 5.37. Let R be a commutative Bezout domain. Then for any nonzero ele-

ment a ∈ R we have that R/aR is a morphic ring.

As a consequence of this fact we can give an example of a commutative mor-

phic ring that is not clean. It is a negative answer to a question of Nicholson in

[49].

Example 5.1. Let R be Henriksen’s ring from Example 4.3:

R = {z0 +a1x+a1x2 + . . . |z0 ∈ Z,ai ∈Q, i = 1,2, . . .}.

We have shown that R is a commutative Bezout domain [?]. The quotient-ring

R/xR according to Theorem 5.12 is a morphic ring but it is not clean since a

homomorphic image of the ideal N = {a1x+a1x2 + . . . |ai ∈Q, i = 1,2, . . .} is an

ideal N/xR that is prime, but belongs to all maximal ideals in the quotient-ring

R/xR. That is why R/xR is not clean because any clean ring has to be a PM-ring.

Note that xR 6= N as x/2 ∈ N but x/2 /∈ xR.
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Definition 5.10. A ring R is called a left (right) Kasch ring if every simple left

(right) R-module embeds in RR (RR) that is r(L) 6= 0 (l(L) 6= 0) for every (maximal)

left (right) ideal L in a ring R.

Theorem 5.38. Let R be a commutative Bezout domain R and a is some nonzero

element in R. The following statements are equivalent:

1. R/aR is a Kasch ring;

2. Any maximal ideal M that contains the element a is principal.

Proof. (1)⇒ (2). Consider a Kasch ring R/aR and let M be a maximal ideal in

this ring. We can write Ann(M) = H where H is an ideal in R/aR and H 6= {0}.
Since H annihilates the maximal ideal M then we can write HM = {0}. Since

the maximal ideal M belongs to Ann(H) then by maximality of M we have that

M = Ann(H) 6= R.

Since M is a maximal ideal then for every element d 6= 0 which belongs to the

ideal H we have the equality dM = {0}. Thus we obtain that the maximal ideal M

belongs to Ann(d), where d is a nonunit.

Hence M = Ann(d) = bR because R/aR is a morphic ring. Therefore, M = bR

and M = bR+ aR = cR, because R is a commutative Bezout domain for some

c ∈ R. Hence M is a maximal ideal which is a principal ideal.

(2)⇒ (1). Suppose that any maximal ideal M that contains an element a, is a

principal one. Considering its homomorphic image we have M = mR = Ann(nR)
because R/aR is a morphic ring. Since m 6∈U(R) then we have Ann(nR) 6= R and

hence nR 6= {0}.
As a result Ann(M) = Ann(Ann(nR)) = nR 6= {0}. Therefore Ann(M) is a

nonzero principal ideal and this proves the fact that R/aR is a Kasch ring. �

In this pioneering paper Kaplansky has raised the question: if aR = bR in a

ring R then are a and b necessarily right associates?

Developing these ideas Canfell [8] has introduced the concept of the uniquely

generated set of principal ideals.

Definition 5.11. Let {aiR|i = 1,2, . . . ,n} be a finite set of principal ideals of com-

mutative ring R. It is said that this set of principal ideals is uniquely generated if

whenever a1R = b1R, . . . ,anR = bnR there exist elements u1, . . . ,un ∈ R such that

ai = biui, i = 1,2, . . . ,n, and u1R+u2R+ . . .+unR = R. The dimension of a com-

mutative ring R (denoted by dim(R)) is the least integer n such that every set of

n+1 principal ideals is uniquely generated.
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Canfell has obtained the characterizations of n-dimensional F-spaces in terms

of the rings of continuous real-valued and complex-valued functions defined on

such spaces. Extending the uniqueness notion of principal ideals generators he

gave an algebraic characterization of the concept ”n-dimensional”.

We will show that in the case of a commutative morphic ring the property

dim(R) = 1 is equivalent to the stable range 2 condition.

Theorem 5.39. Let R be a commutative Bezout ring and dim(R)= 1. Then st.r.(R)=
2.

Proof. Let a,b ∈ R. Since R is a commutative Bezout ring, aR+bR = dR for some

element d ∈ R. There exist a0,b0 ∈ R and u,v ∈ R such that a = da0, b = db0 and

d = au+bv = a0ud+b0vd. Taking q = 1−a0u−b0v. We see that dq = 0 and for

any elements t1, t2 ∈ R there are the equalities (a0+ t1q)d = a, (b0+ t2q)d = b. We

will make a definite choice of ti, i = 1,2, so that the elements a0 + t1q = a1 and

b0 + t2q = b2 generate R.

Then a1x + b1y = 1 for some elements x,y ∈ R and a = a1d, b = b1d. By

Theorems ?? R is an Hermite ring and st.r.(R) = 2. Theorem is proved. �

Theorem 5.40. Let R be a commutative morphic ring of stable range 2. Then

dim(R) = 1.

Proof. Let a1R = b1R and a2R = b2R. Then a1 = x1b1, a2 = x2b2 and b1 = y1a1,

b2 = y2a2 for some x1,x2,y1,y2 ∈ R. Then b1(1− x1y1) = 0, b2(1− x2y2) = 0 and

1− x1y1 ∈
Ann(b1), 1− x2y2 ∈
Ann(b2). Let Ann(b1) = α1R and Ann(b2) = α2R for some α1,α2 ∈ R.

Since 1− x1y1 ∈ α1R and 1− x2y2 ∈ α2R, we have x1R + α1R = R and

x2R + α2R = R. Obviously, x1R + x2R + α1α2R = R. Since st.r.(R) = 2 then

(x1 +α1α2s)R+(x2 +α1α2t)R = R for some s, t ∈ R. Since

(x1 +α1α2t)b1 = x1b1 +α2tα1b = x1b1 = a1,

(x2 +α1α2s)b2 = x2b2 +α1sα2b = x2b2 = a2.

Denote x1 +α1α2t = u1, x2 +α1α2s = u2.

We have proved that u1b1 = a1, u2b2 = a2 and u1R+u2R = R, that is dim(R) =
1 that theorem is proved. �

As a consequence of Theorems ?? we obtain the following result.
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Theorem 5.41. A commutative morphic ring R is a ring of stable range 2 if and

only if dim(R) = 1.

The notion of principal ideals being uniquely generated first appeared in Ka-

plansky’s classic paper [39]. He had raised the question: when the ideals of the ring

R satisfy the property of being uniquely generated. He remarked that for commuta-

tive rings the property holds for principal ideal rings and artinian rings. In the case

of a left quasi-morphic rings the property of being uniquely generated is equivalent

to that a ring has stable range one. We will show that for a commutative morphic

ring the condition of a neat range one condition is equivalent to the weak uniquely

generation condition by neat elements.

In the following we assume that R is a commutative ring.

Definition 5.12. (a) An element a ∈ R is a unit modulo a principal ideal bR if

ax−1 ∈ bR for some x ∈ R. (b) A unit a ∈ R modulo a principal ideal bR lifts to a

neat element, if a− t ∈ bR for some neat element t ∈ R.

Proposition 5.13. Let R be a commutative ring. Then the following are equivalent:

1. R is a ring of neat range one;

2. every unit lifts to a neat element modulo every principal ideal.

Proof. We assume that R is a ring of neat range one. Let a,b,c ∈ R be such that

ab− 1 ∈ cR, i.e. b is a unit modulo the principal ideal cR. We are going to show

that there exists a neat element t ∈ R such that b− t ∈ R.

Let x ∈ R be such that ab− 1 = cx. Then ab− cx = 1. Since R is a ring of

neat range one there exists an element s ∈ R and a neat element t ∈ R such that

b− cs = t. Therefore b− t ∈ cR where t is a neat element in R.

To prove the implication (2)⇒ (1) we assume that every unit of R lifts to some

neat element modulo every principal ideal. We are going to show that R is a ring of

a neat range one. Let a,b,c,d ∈ R such that ab+cd = 1. Then ab−1 ∈ cR. By our

hypothesis there exists a neat element t ∈ R such that b− t ∈ cR. Thus b− t = cx

for some x ∈ R i.e. b+ c(−x) = t is a neat element, i.e. R has neat range one. �

Proposition 5.14. A morphic ring is a ring of neat range one if and only if for any

pair of elements a,b ∈ R such that aR = bR there are neat elements s, t ∈ R such

that as = b and a = bt.

Proof. In view of Proposition 5.13 it suffices to show that every unit lifts to a neat

element modulo every principal ideal in R.
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Let x be a unit that lifts to a neat element modulo the principal ideal yR, i.e

there exists z ∈ R such that zx− 1 ∈ yR. We would like to show that there exists

a neat element t ∈ R such that x− t ∈ yR. Since R is morphic then there exist a,b
such that yR = Ann(a) and xaR = Ann(b).

Obviously, xR⊂ Ann(ab) and yR⊆ Ann(ab).
Since zx− 1 ∈ yR then we have xR+ yR = R and xR+ yR = Ann(ab). Then

ab = 0 and a ∈ Ann(b). Also we have Ann(b) = xaR ⊆ aR. Therefore Ann(b) =
xaR = aR. Under the assumption on ring there exists a neat element t ∈ R such that

xa = ta. This implies that (x− t)a = 0, so x− t ∈ Ann(a) = yR. Thus Proposition

5.13 implies that R is a ring of neat range one.

Conversely, let aR = bR. Then there exist x,y ∈ R such that a = bx, b = ay.

Therefore b = bxy, b(1− xy) = 0. This shows that 1− xy ∈ Ann(b).
It is clear that xy+(1− xy) = 1, so xy ∈ xR and 1− xy ∈ (1− xy)R. Therefore

xR+(1− xy)R = R. Since R is assumed to be of neat range one then there exists

s ∈ R such that x+(1−xt)s = t is a neat element of R. Since 1−xy ∈Ann(b) then

(x+(1− xy)s)b = tb, xb = tb, where xb = a. Thus a = tb for some neat element

t ∈ R. Similarly, b = sa for some neat element s ∈ R that completes the proof. �

Theorem 5.42. If R is an elementary divisor domain and a ∈ R \ {0}, then the

quotient-ring R/aR is a morphic ring of neat range one.

Proof. Since every elementary divisor domain is a Bezout ring then by Theo-

rem 5.12 we know that R/aR is a morphic ring. Since every homomorphic image

of an elementary divisor ring is an elementary divisor ring then R/aR is a morphic

ring of neat range one as was desired.

Let R be an elementary divisor domain which is not of almost stable range one.

Then there exists an element a ∈ R such that in the quotient-ring R = R/aR there

exist elements b,c ∈ R such that bR = cR. Hence there exist non invertible neat

elements s, t ∈ R such that bs = c, ct = b.

5.8 Gelfand range one and Bezout PM*-domains

Recall that in Section ?? we have introduced a notion of Gelfand ring in a com-

mutative case. Here is a definition in a noncommutative one.

Definition 5.13. A Gelfand ring is an associative ring R with identity such that if

I and J are distinct ideals then there are elements i and j such that iR j = 0 i is not

in I and j is not J.
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Mulvey [46] introduced this notion as rings which one could prove a general-

ization of Gelfand duality and named them after Israel Gelfand.

In this section we are going to prove that a commutative Bezout domain in

which any nonzero prime ideal is contained in a unique maximal ideal is an ele-

mentary divisor ring.

Definition 5.14. A nonzero element a of a commutative ring is called a PM-

element if the quotient-ring R/aR is a PM-ring.

Proposition 5.15. For a commutative ring R the following statements are equiva-

lent:

1. a is a PM-element;

2. for each prime ideal P such that a ∈ P there exists a unique maximal ideal such

that P⊂M.

Proof. The equivalence of statements follows from the fact that every prime ideal

of R = R/aR is of form P/aR, where P is a prime ideal of R such that a ∈ P. �

As a consequence of Proposition 5.15 we obtain the following results.

Proposition 5.16. A commutative domain R is a domain in which any nonzero

prime ideal is contained in a unique maximal ideal if and only if any nonzero

element of R is a PM-element.

Proposition 5.17. An element a of a commutative Bezout domain R is a PM-

element if and only if for every elements b,c ∈ R such that aR + bR + cR = R

an element a can be represented as a = rs, where rR+bR = R and sR+ cR = R.

Proof. Let R = R/aR, b = b+aR, c = c+aR. Since

aR+bR+ cR = R

then bR+ cR = R. Therefore, if a = rs, where rR+bR = R and sR+ cR = R, then

bR+ cR = R, 0 = Rs, RR+bR = R,

sR+ cR = R,

i.e. R is a Gelfand ring. By Theorem 2.3 R is a PM-ring. Conversely, let R be a

PM-ring. This is the same being a Gelfand ring, i.e. 0 = Rs where RR+ bR = R,

sR+ cR = R for arbitrary b,c ∈ R such that bR+ cR = R.
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Whence we obtain aR+bR+ cR = R. The equality

0 = 0+aR = Rs

implies that rs ∈ aR, where R = r+aR, s = s+aR. Let rR+aR = r1R. The latter

yields r = r1r0, a = r1a0, where r0R+a0R = R. Suppose that

r0u+a0v = 1

for some u,v∈ R. Since rs∈ aR, then rs = at for some t ∈ R. After the substitution

of r = r1r0, a = r1a0 into the latter equality we obtain

r1r0s = r1a0t,

and using the fact that R is a domain we see that a0t = r0s. From the equality

r0u+a0v = 1

we obtain sr0u+ sa0v = s, a0(tu+ sv) = s. Therefore a = r1a0, where

r1R+bR+ r1a0R = R.

Then r1R+bR=R. Since a0(tu+sv) = s and a0R+cR+r1a0R=R then we obtain

a0R+ cR = R. Proposition is proved. �

Theorem 5.43. A commutative Bezout domain in which any nonzero prime ideal

is contained in a unique maximal ideal is an elementary divisor ring.

Proof. Let R be a commutative Bezout domain in which any nonzero prime ideal

is contained in a unique maximal ideal. Let aR+ bR+ cR = R. According to the

restriction unposed on R by Proposition 5.17 we have that b= rs, where rR+aR=
r, sR+cR = R. Let p be such that sp+ck = 1 for some k ∈ R. Hence rsp+rck = r.

Denoting rk = q we obtain

(bp+ cq)R+aR = R.

Let pR+qR = dR and p = d p1,q = dq1, where p1R+q1R = R. Hence

p1R+(p1b+q1c)R = R

and since pR⊂ p1R we obtain p1R+ cR = R, p1R+(p1b+q1c)R = R.

Since bp + cq = d(bp1 + cq1) and (bp + cq)R + aR = R we obtain (bp1 +
cq1)R+ aR = R. Finally, we get ap1R+(bp1 + cq1)R = R. By Theorem 3.6 we

conclude that R is an elementary divisor ring. Theorem is proved. �
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In the case of a commutative Bezout domain this result can be clarified and

improved.

Definition 5.15. Let R be a commutative Bezout domain. We say that R is a ring of

Gelfand range 1 if for any a,b ∈ R such that aR+bR = R there exists an element

t ∈ R such that a+bt is a PM-element.

Since every unit is PM-element we have the following result.

Proposition 5.18. A commutative Bezout domain of stable range 1 is a ring of

Gelfand range 1.

Since every avoidable element is a Gelfand element by Proposition 8.1 and

Theorem 5.21 we obtain the theorems:

Theorem 5.44. Elementary divisor domain R is a ring of Gelfand range 1.

Theorem 5.45. Let R be a commutative Bezout domain of Gelfand range 1. Then

R is an elementary divisor ring.

Proof. It is sufficient to diagonalize a matrix

A =

(

a 0

b c

)

where aR+bR+ cR = R by Theorem 3.4.

Write ax+by+cz= 1 for some elements x,y,z∈ R. Then bR+(ax+cz)R= R.

Since R is a ring of Gelfand range 1 there exists some t ∈ R such that d = b+(ax+
c)t is a PM-element.

Using elementary transformations we obtain a PM-element d in a matrix

(

1 0

xt 1

)

A

(

1 0

zt 1

)

=

(

a 0

d c

)

,

where aR+dR+ cR = R and d is a PM-element.

According to the restrictions on d there is a decomposition d = rs, where rR+
aR = R, sR+cR = R. Let p,k ∈ R be such that sp+ck = 1 for some element k ∈ R.

Hence rsp+ rck = r and d p+ crk = c. Denoting rk = q we obtain (d p+ cq)R+
aR = R. If pR+ qR = δR then p = p1δ , q = q1δ and p1R+ q1R = R for some

p1,q1 ∈ R.

Since p1R+ cR = R and p1R+q1R = R then

p1R+(p1d +q1c)R = R.
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Moreover, the equalities d p+ cq = δ (d p1 + cq1) and (d p+ cq)R+ aR = R

imply that (d p1+cq1)R+aR=R. Reminding that (d p1+cq1)R+ p1R=R, finally

we obtain (d p1 + cq1)R+ap1R = R. Since p1 and q1 are coprime then a column

(

p1

q1

)

can be completed to some invertible matrix P. Hence

We have
(

a 0

d c

)

P =

(

ap1 ∗
d p1 + cq1 ∗

)

= B.

Obviously a matrix B (and hence matrix A) admits canonical diagonal reduction,

i.e. R is an elementary divisor ring. Theorem is proved. �

5.9 Lattice-ordered groups and Montgomery counterexample

Larsen M. D., Lewis W. J., Shores T. S. [43] asked the following question: if R is

a Bezout domain with the property that every nonzero prime ideal is contained in

a unique maximal ideal then is R necessarily an adequate ring?

In our approach we use the group of divisibility of a commutative Bezout do-

main.

Definition 5.16. For a domain R we denote by K its classical field of fractions and

by K∗ the set of nonzero elements of K. K∗ is an abelian group under multiplication

and U(R) is its subgroup. We define

G(R) = K∗/U(R)

and call it as group of divisibility of R. On the set G(R) we can introduce the partial

order by the relation

aU(R)≤ bU(R)⇔ b|a ∈ R ∈ G(R)

for any aU(R) ≤ bU(R) ∈ G(R). This definition is well-defined and makes G(R)
into a partially-ordered group. The positive cone is the set of elements

aU(R) ∈ G(R)

such that
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1U(R)≤ aU(R),

i. e. it is the set of cosets whose representative belong to R. We denote the positive

cone of a partially ordered group G by G+.

The partial-order defined above becomes a lattice-order and makes G(R) into a

lattice-ordered group (or l-group for short) precisely, when R is a Bezout domain.

The following well-known theorem states that every abelian l-group may be

realized as the group of divisibility of some Bezout domain. For some nice refer-

ences about lattice-ordered groups see [ ].

Theorem 5.46. (Jaffard-Ohm-Kaplansky) Let G be an abelian l-group. There ex-

ists a Bezout domain R such that G(R)∼= G.

In this group the operation will be written additively. Let G be a lattice-ordered

group. For notational convenience, let

G+ = {x ∈ R|x≥ 0}.

Definition 5.17. We say that G is adequate if for every a,b ∈ G+ if there exist

r,s ∈ G+ such that a = r + s, r ∧ b = 0 and if 0 < s′ ≤ s for some s′ ∈ G then

s′∧b 6= 0.

It is easy see that we have simply translated the Bezout ring adequacy condition

into the language of ordered groups. We immediately have the fact that a Bezout

domain is adequate if and only if its group of divisibility is adequate.

Let G be a lattice-ordered group and let b ∈ G+. We define

Gb
+ = {a ∈ G+|a∧b = 0}, Gb = {a1−a2|a1,a2 ∈ Gb

+}.

Note that if

a1∧b = 0, a2∧b = 0, ⇒ (a1 +a2)∧b = 0,

so that Gb is a lattice subgroup of G.

Definition 5.18. It is said that an l-group is projectable if for each b ∈G+, Gb is a

summand of G (see Theorem 5.47).

Theorem 5.47. Let G be a lattice ordered group. Then G is adequate if and only if

for each b ∈ G+, Gb is a summand of G.
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Proof. Let G be adequate and take any b ∈ G+. Let

Hb
+ = {a ∈ G+|a′∧b 6= 0 whenever 0 < a′ ≤ a}.

If a1,a2 ∈ Hb
+ and 0 < s ≤ a1 + a2 for some s ∈ G, then either s∧ a1 6= 0 or

s∧a2 6= 0; hence s∧b 6= 0 and a1 +a2 ∈ Hb
+. Thus

Hb = {a1−a2|a1,a2 ∈ Hb
+}

is a lattice-ordered subgroup of G. Clearly Gb∩Hb = {0}.
If a ∈G+ then a = r+ s for some r ∈Gb and s ∈Hb since G is adequate. Since

any element of a lattice ordered group is the difference of two positive elements,

we get that

G = Gb⊕Hb.

Conversely suppose that G = Gb⊕H for some lattice subgroup H of G.

Let a ∈ D+ and write a = r + s for some r ∈ Gb
+, s ∈ H+. Then r∧ b = 0.

Suppose 0 < s′ ≤ s for some s′ ∈ G. Then s′ ∈ H and hence s′∧b 6= 0. Thus G is

adequate. Theorem is proved. �

It is well known [ ] that any lattice-ordered group can be lattice-embedded into

a product of totally ordered groups in such way that infimums are preserved. Both

a direct product and a direct sum of totally ordered groups are adequate groups, as

we can easily prove the following result.

Proposition 5.19. Let R be a Bezout domain. Then R is adequate if its group of

divisibility is order-isomorphic to either a direct sum or direct product of totally

ordered group.

By Theorem 5.46 if R is a Bezout domain, then its divisibility group G(R) is

an l-group and if G is any abelian l-group, there exists a Bezout domain R such

that G(R) ∼= G. Moreover, there is an poset anti-isomorphism between the set of

prime ideals of a Bezout domain and the set of prime subgroups of its divisibility

group.

Definition 5.19. A subgroup S of an l-group G in an l-subgroup provided that S is

a sublattice of G, and S is a convex l-subgroup if 0 < g,s ∈ S and g ∈G imply that

g ∈ S.

Definition 5.20. A convex l-subgroup S of an l-group G is prime if G/S is totally

ordered or equivalently if a∧b = 0 in G then a ∈ S or b ∈ S.
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Example 5.2. (Montgomery’s example) [5] In this example we will construct a

Bezout domain R such that any its prime ideal is contained in a unique maximal

ideal, but R is not adequate. Our goal is to find an abelian l-group G that satisfies:

1. Each proper prime subgroup of G contains unique minimal prime subgroup;

2. G is not projectable.

Consider the following partially ordered set

Γ :

0 • −−→ • 1

1 • −−→ • 2

2 • −−→ • 3

3 • −−→ • 4

4 • −−→ • 5

• −−→ •

• −−→ •

• −−→ •
Let V be the set of all integer valued functions on Γ and define

v = (v0,v1, . . .)

to be positive if v0 > 0 and vi ≥ 0 where i = 2,3, . . . or v0 = 0 and vi ≥ 0 for

i = 1,2,3, . . .. Then V is an l-group. Let G be the subgroup of V generated by the

small or restricted direct sum on 1,2,3, . . . and the element a = (1,0,0,1,0, . . .). It

is easy to checked that if g ∈ G then g∨0 ∈ G and hence G is an l-subgroup of V .

Let V (i) be the characteristic function on i for i = 1,2,3, . . .. Then

G = Gv(i)⊕Hv(i)

for i = 2,3, . . ., but a ∈ G\Gv(i)⊕Hv(i), so that G does not projectable.

Let U0 = {v ∈ G|v0 = 0}, U1 = {v ∈ G|v0 = v1 = 0}, Ui = {v ∈ G|vi = 0} for

i = 2,3, . . ..
It can be easily checked that G/U is totally ordered, so that each Ui is a proper

prime subgroup of G. Suppose that P is a prime subgroup of G. If v(i) ∈ P for

i= 2,3, . . . then P⊇U1 and hence P=U0 or P=U1. If v(i) /∈P for some i> 1, then

Ui ⊆ P and hence P = Ui. Thus {Ui}
∞

i=0 is the set of all proper prime subgroups
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of G and hence G is an l-group such that each proper prime subgroup contains a

unique minimal prime subgroup.

Let R be a Bezout domain whose group of divisibility is isomorphic to con-

structed l-group G. Then R is a Bezout domain each nonzero prime ideal contained

in a unique maximal ideal and R is not adequate. �

Definition 5.21. Let G be an l-group (written multiplicatively).

1) We say u ∈ G+ is a (weak) order unit if whenever u∧ x = 1 then it follows

that x = 1. It is known that a positive element of G is an order unit precisely when

it does not belong to any minimal prime subgroup of G.

2) Let x ∈ G+. If there exists an element y such that x∧ y = 1 and x∨ y is an

order unit then x is said to be a complemented element of G.

3) If every positive element of G is complemented, then G is said to be a

complemented l-group.

4) G is called locally complemented if for each g ∈ G+ the convex l-subgroup

generated by g (denoted by G(g)) is complemented.

5) If every prime subgroup of G contains unique minimal subgroup then it is

said that G has stranded primes.

Proposition 5.20. [ ] Suppose that R is a commutative Bezout domain. R is a neat

ring if and only if G(R) is locally weakly complemented and has stranded primes.

Proposition 5.21. [ ] A commutative Bezout domain R satisfies Henriksen hypoth-

esis if and only if G(R) is a locally complemented l-group.

5.10 Rings of continuous functions C(X)

Recall some basic information from topology that will be used for our purposes in

the following.

Definition 5.22. Let X be a topological space. We say that a subset W of X is

clopen if it is both closed and open in X . A topological space is called zero-

dimensional if it has a base of clopen sets, and strongly zero-dimensional if any

two disjoint closed sets are contained in some disjoint clopen sets. Finally, we

say that X is basically disconnected if any two disjoint open sets have disjoint

closures.

In the following by C(X) we mean the ring of all real-valued continuous func-

tions on topological space X .
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Definition 5.23. Suppose X is a topological space. A subset Z ⊆ X is called azero-

set of X if there is f ∈C(X) such that

Z = {x ∈ X | f (x) = 0}.

A cozero-set is the (set theoretic) complement of a zero-set.

Note that C(X) is an abelian l-group under the point-wise operations and the

constant function 1 is a weak-order unit [ ].

Definition 5.24. The topological space X such that every l-subgroup of C(X) con-

tains a unique minimal prime subgroup is called F-spaces

In the following we assume that our topological spaces are Tychonoff (com-

pletely regular and Hausdorff).

Recently we have shown that for any element a of an adequate domain R the

quotient-ring R/aR is a clean ring then every adequate domain is a neat one. The

converse isn’t true as we will see in the following example.

Example 5.3. [ ] Let G = C(βN \N), where βN denotes the Stone-C̆ech com-

pactification of the natural numbers. Since the space βN \N is a strongly zero-

dimensionall F-space and is not basically disconected then it follows that G is

weakly complemented and has stranded primes but is not complemented [ ]. There-

fore, if R is a commutative Bezout domain whose group of divisibility is isomor-

phic to G then R is a neat Bezout domain an hence an avoidable ring. Since G is

not complemented R does not satisfy Henriksen hypothesis an hence R is not an

adequate ring.


